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Abstract  

A new technique to study the telegraph equation, mostly familiar as damped wave equation is 

introduced in this study. This phenomenon is mostly rising in electromagnetic influences and 

production of electric signals.  The proposed technique called as He-Fractional Laplace technique 

with help of Homotopy perturbation is utilized to found the exact and nearly approximated results 

of differential model and numerical example of telegraph equation or damped wave equation in 

this article. The most unique term of this technique is that, there is no worry to find the next iteration 

by integration in recurrence relation. As fractional Laplace integral transformation has some 

limitations in non-linear terms, to get the result of nonlinear term in this differential mode, He 

polynomials via homotopy techniques of iteration is proposed to find the result of the computation 

assignment. The obtained result by this proposed technique directed that this technique is quite 

ease to apply and convergent rapidly to exact solutions. Numerous examples are described to 

determine the stability and accuracy of the proposed technique with the graphical explanation.  

  

Keywords: Fractional Laplace method, He’s Polynomials, Homotopy Perturbation, Approximated 

solutions, Telegraph Equation. 

 

1. Introduction 

Integral transformations are mathematical operations that transform a complex function in a 

function space into a simpler function in a transformed space. This transformed function can be 

easily characterized and manipulated through integration in the transformed function space. The 
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inverse transform technique is often used to convert the transformed function back into its original 

space. 

Although the information on this topic is abundant, the derivation of various research results is 

only sometimes reliable. The outcomes often show contrasts depending on the material utilized and 

the analysis area. Some related studies are assessed here. 

Many mathematicians have presented the theories of Fourier and Laplace transformations theories, 

but no one has yet compared k-Fourier and k-Laplace transforms. Ongoing work on modern 

integral transformations, such as Laplace, Fourier, Mahgoub, Mohand, and Aboodh 

transformations, is still in progress. The authors of some comparative studies have proven that 

these transformations are integral to solving many advanced problems in engineering and sciences. 

Unstable responses, bifurcation situations, chaos, and various other complex effects of vibration 

typically describe nonlinear vibrational phenomena. It is essential to understand the vibrational 

behavior to comprehend nonlinear vibration systems better. Factors contributing to vibrational 

phenomena include nonlinear damping, elastic deformation, and electrical fields. 

To proceed, we must consider the following variables: 

𝐼 Present the current 

𝑢 Indicate the potential 

𝐿 Present the inductance 

𝐶 Shows the Capacitance 

𝐺 Indicate the conductance leakage  

Law of physics which described the relationship between the changes of potential and current in 

transmission line can be described by the partial difference equation of first order as, 

 
0Cu I Gu   

        (1) 

 
0ILI u R   

        (2) 

The above relation is known as Telegraphic equation.  

We can get 2nd order differential equation by differentiate (1) with respect to “𝜇” and (2) with 

respect to “𝜉” and after resolving them, we have 

 
0u L Gu Cu R Gu Cu    

              

This can also write as, 

  2u u u u         
      (3) 

Where 

1
, ,

R G

L LC C
    

 this is the telegraph equation which take place in electrometric 

waves. 

Many works on the numerical solution of differential 2nd order hyperbolic equations have been 

done in previous years. An algorithm of numerical solution of a telegraphic equation is described 

by [2]. In [3], the author formulated a scheming couple for Haar wavelets and finite differences to 

solve telegraphic hyperbolic equality with some variable coefficients. The solution of the 
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telegraphic equation is also explained in [4,5] for the nonlinear phenomenon. Kamal integral 

technique was used with delay differential equations in [6]. The differential-integral equations in 

[7] were resolved using modified Laplace series results via the Adomian polynomial 

decomposition method (LADM). The conventional Adomian polynomials were utilized to get 

around the non-linearity. To find out the numerical approximated results of the system of partial 

on linear differential equations in [8], practiced the Laplace decomposition approach and the pade 

approximation. It also modified the Laplace decomposition method used in [9] for differential 

equalities of the Emden-Lane type. The first and second kinds of non-linear Volterra-Fredholm 

integro differential equations were solved analytically by the author [10] using a collective form of 

the modified Laplace Adomian substitution and Laplace Adomian polynomial decomposition 

method (LADM). There are many applications for partial differential equations in the sciences. 

There are many different ways to solve partial differential equations. Engineering and scientific 

sectors frequently employ used Laplace integral techniques. Numerous writers [11-14] have 

discussed how integral transformations can resolve improper integrals that include error functions. 

[15] Used the Kamal integral technique to find the answers to Abel's equation. [16] offered a Kamal 

integral technique-based solution to the error function. 

 

In [17], the authors described the substitution method of Laplace transforms to solve linear partial 

differential equations with more than two independent variables. The influence of Bio-convection 

and activation energy on the Maxwell equation on nano-fluid has been explained by [18] with the 

help of the Matlab program. An analytical solution of the advection-diffusion equation in one-

dimensional with a semi-infinite medium has been elaborated by [19] with the help of the Laplace 

transformation technique. In 2021, researchers in [20,21] introduced a new transformation to solve 

differential equations with trigonometric coefficients. The application of Kamal transformation in 

thermal engineering has been shown in [22], and the solution to the temperature problem and some 

of its applications are shown in the article. In [23], a new SEE transformation has been shown, 

which is quite helpful in solving differential equations and systems of differential equations. The 

solution of differential equations of moment Pareto distribution with logarithmic coefficients has 

been shown in [24] with the help of the Al-Zughair transformation. A new transformation in the 

logarithmic kernel has been shown in the article [25]; this transformation helps solve differential 

equations with logarithmic coefficients and also ordinary differential equations. 

The main concept of the variation iterative method (VIM) gave by [26], but finding the Lagrange 

multiplier (LM) was challenging. After that, VIM introduced a methodology as He’s polynomial 

mentioned in [27-29], and many applications of this are seen in [30-32] to get solutions to non-

linear problems. Approximated results obtained by VIM converge rapidly to the exact solution. 

Also, the solution of the telegraphic equation by VIM is shown in [33]. Many researchers find the 

approximate solution of many non-linear differential equations via homotopy perturbation shown 

in [34-39] and in [40,41], authors used the combined technique of Laplace and homotopy 

perturbation to find the Lagrange multiplier. Sometimes, finding the value of LM is difficult due 

to some limitations of existing techniques. To overcome all hurdles, we introduced a new technique 
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to find the analytical results of the telegraphic mathematical model. In this article, we will introduce 

He-Fraction Laplace integral transformation and its applications in resolving the telegraph model 

or damped wave mathematical model. Fractional Laplace transformation can be defined as below. 

Definition:[42] Integral Fractional Laplace transformation of the function 𝑓(𝜉) for all 𝜉 ≥ 0 is 

defined as 

 
1

0

( ) ( )vL f e f d




  


 
      (4) 

Where 𝛼 is real numbers and 𝑣 is transformed variable. By choosing the values of parameter 𝛼 =

1 as arbitrary real number, we can get the Laplace transformations as Laplace. 

2. Methodology 

a  Decomposition Homotopy Perturbation Technique of Nonlinear Equations  

For the implementation of homotopy perturbation method, let assume a nonlinear equation as, 

    R c S  
       (5) 

In above 𝑆, 𝑅 and 𝑐 described the nonlinear term, linear term and source value respectively. By 

using the homotopy technique we have 

    , : 0,1H    R R  

As 

 
           0, 1H R R R S c                    

         0 0R R R S c           
  (6) 

      0R c S     
 

Here,  0R c 
 

   R c S    
 

In this technique, solution 𝜙 can be shown as, 

 
 2 3

0 1 2 3
0

lim ... ,


      


    
    (7) 

   0 1 2 3 ... ,       
 

  0

i



       (8) 

In this [0,1]   and 0 is the first approximation, by using (6) and (7) 
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   

   

 

0 01 02

2
2 3 '

0 1 2 3 0 01 02

''

0

...

... ...
2

...

S

c S

S

   


         



   
 
 

         
 
 
   

By equating the powers of  , one has 

 
0

0: ,c    

  1

1 0: S  
, 

  
'2

2: S  
 

  
''3

3: S  
 

 M  

So equation (8) can be expressed as, 

 0 1 2 3 ...          

2.2. He–Fractional-Laplace Technique  

To find the He-Fractional Laplace technique, first we need to take Fractional Laplace integral 

transformation of equation (5) 

 
      0SR c       L

      (9) 

It implies, 

 
       0c SR            L L

 

Reccurrence relation can be expressed as, 

 

      
1 1

1n nv v R cS 
      

   
             

   
L L

  (10) 

we may use optimal conditions, to identify the Lagrange multiplier 

1

v
 
 
 

 

1

1

1
0

n

n

v

v











 
 
 


 
 
   

by applying the inverse Fractional-Laplace integral transformation of eq. (10) we get, 
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      
1 1

1

1n nv v R S c 
      



   
               

   
L L L

  (11) 

At the end, Homotopy perturbation technique has used to find the approximation series results by 

equating the degrees of  . 

3. Application 

Analytical solution of telegraph equation has been found in this section with the help of He-

Fractional Laplace technique. Proposed method shows the significant and novel behavior in results 

obtained. Illustrated numerical examples provides the existence and efficiency of proposed 

technique. 

Example 1: 

Let assume the proceeding telegraph equation 

        
       (12) 

With given initial and boundary values respectively, 

    ,0 , ,0 2e e



    
     (13) 

    2 20, , 0,e e 

     
     (14) 

By using the Fractional-Laplace integral technique on equation (12) 

 

2 2

2 2
0



  




   
    
  

L

 

Multiply the above mentioned equation by 

1

1 v
 
 
  , we get 

 

2

1

2

2 2
0

  


 

   
    
  

L

 

Recurrence relation can be expressed as,  

 

1 1 2 2

1 2 21, ,n nv v 


  
  


 




       
         

     
L

  (15) 

By using the variational parameter in eq. (15) 

 

1 1 2 2

1 2 21, ,n nv v 


  
      

 


       
         

     
L

 

 
11

1

1 1
2

1 2

1 2
, , , ,0 ,n n n nv v vv v  


 

 
       


 




                     


 
     

            
L
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1 1 1

1

2
1

1, , ,n n nv v vv       

     
      

 

    

  



 

It will turn into, 

  

21
1

1
1

v

v



 





 













 

Here n is restricted as 0n  and 

 

1

1

1

,

0

,

n

n

v

v















 
 
 


 
 
   

By putting the value of  1 s
in eq. (15)  

 

1 1 2 2

1 22 2
1

1
, , n n n

n n nv

v

v 




  
  


  




       
         

 
 


     



L

 

By using the inverse Fractional-Laplace in above mentioned equation 

 

   
2

2 2

1

1 2 2
1

1
, , n n n

n n n

v







  
    


 







 
 

    
      

   
 







 
 



L L

 

By the help of He’s polynomials, above equation turns into 

 

 

2

2

2 4 1

0 1 2 224
1

2

1
,

n n

n

n

nv

 



 


        










   
   

            
 

 

 
 
 

L L L

 

It can also written as, 

 

 4

2

2

2 1

0 1 2 4 2
1

1
, ,n n

n n

v

 



 
     

 
    

 
 

   
   



     
   

 


 

  

L L L
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 

2 2

0 0 1 1

0 12 2

1

22

2 3 3 32 2

2 32

2
1

2

1
, ,n

v

 



   
  

 
  

  
   

 

 


 



        
          

      
    

                    

 
 
   

L L

 

By equating highest powers of 𝛹 

    0

0

0 0, , ,:       
 

 

2

2

1

1

1 1

1 1 2

1 :
1

v







 
  





 
 

   
     

   
 

 
 

 

L L
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2
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1

2 2

2 2 2
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1

v







 
  





 
 

   
     

   
 

 
 

 

L L

 

 

2

2

1

1

3 3

3 3 2
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1

v







 
  





 
 

   
     

   
 

 
 

 

L L

 

 

2

2

1

1

4 4

4 4 2

4 :
1

v







 
  





 
 

   
     

   
 

 
 

 

L L

 

 M  

so, we get 

 0 (1 2 )e    

 

2 3

1

2
2

3
e  

 
  
   

 

3 4 5

2

2 1 1

3 2 15
e   

 
    
   
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4 5 6 7

3

1 1 2 1

6 6 45 315
e    

 
    
   

 

5 6 7 8 9

4

1 7 1 1 1

30 180 70 504 11340
e     

 
      
   

 M  

Hence this result can be expressed as, 

   0 1 2, ...n n          
 

 
  2 3 4 54 2 4

, 1 2 2 ....
3 3 15

n e       
 

       
      (16) 

Result is rapidly convergent to below equation,  

   2,n e    
         (17) 

Equation (17) provides the exact solution and (16) provides the He-Fractional Fractional-Laplace 

approximated solution. 

  
Figure 1: The given diagram explain the exact solution of Example 1. 

  
Figure 2: The given diagram explain the He-Fractional Fractional-Laplace solution of Example 1. 
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Example 2:  

Let assume the proceeding telegraph equation, 

 
4 4       

        (18) 

With given initial and boundary values respectively, 

    2,0 1 , ,0 2e 

      
      (19) 

    20, 1 , 0, 2e 

     
       (20) 

By using the Fractional-Laplace integral technique on equation (18)

 

2 2

2 2
4 4 4 0

  




   
    

  
L

 

Multiply the above mentioned equation by 

1

2 v
 
 
   

 

2 2

2 2 2
4 4 4 0



  




   
    

  
L

 

Recurrence relation can be expressed as,  

 

1 1 2 2

2 2 21 4 4, 4, n n n

n n nv v 


  
    







   
   

   
    

      
L

  (21) 

By using the variation in equation (21) 

 

1

1

1 2 2

2 2 2
4 4 4 ,, , n n n

n n nv v 


  
    


  

 


      
  


 

  
   

  
L

 

 

1
2

1

1 1 1

2, , ,n n nv v v v         

       
        

         

It will turn into, 

  

2

1

2
1

1
v

v





 





 













 

Here n is restricted as 0n  and 

  

1

1

1 ,

0

,

n

n

v

v









 

 



 
 
 

 
 





  
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By putting the value of 

1

2 v
 
 
   in equation (21) 

 

21 2

1 1 2 2

2
1

1
4 4 4, , n n n

n n nv v

v

 




  
    




   
    

   
   

    
 
 

  
L

 

By using the inverse Fractional-Laplace in above mentioned equation 

 

 
1

1 2

1 2 2

1

2 2

1
4, 4 4, n n n

n n nv

v


 



  
    









 
 

    
     





 
 

     
 
 




L L

 

By the help of He’s polynomials, above equation turns into 

 

 2 3 4

0 1 2 3 4

2

2

2

2

1

21

4
1

,

4 4

n n

n

n

nv

 



 




         













 

   
   

 



    
 



  

  
  


  

L L L

 

It can also written as, 

 

 2 3 4

0 1 2 3 4

1

21

2

2
,

4 4
1

4

n

n

n

n

v

 






          









  
     

  
  

  

      
 
 
 

 
 

L L L

 

  2

2 2

2 2

2 2

1

2 2

3

1
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4 4 4 4 4 4

1
4 4 4 4 4 4,

n n n n

n n

n n n n

n n n
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 



   
  

 





  
      

 

 






        
         

       
  

                         
 

  
 

 
  


 



 

 


L

L L

 

By equating highest powers of   

    0

0

0 0,: ,      
 

https://creativecommons.org/licenses/by/4.0/


IHJPAS. 36 (3) 2023 

 

360 

This work is licensed under a Creative Commons Attribution 4.0 International License 

 

2

2

1 1

1

0 0

1 0 2

1
: 4 4 4

v

 






 
 





 
 

   
   

   
 
 

 
 

 

L L

 

 

2

2

2 1

1

1 1

2 1 2

1
: 4 4 4

v

 






 
 





 
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 
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1
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 






 
 





 
 

   
   
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 
 
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 M  

so, we get 

 
2

0 1 2 ,e      

 

2 3

1

4
2 ,

3
   

 

 

3 4 5

2

8 4
2 ,

3 15
      

 

 

4 5 6 7

3

8 32 4 8
,

3 15 9 315
       

 

 

5 6 7 8 9

4

32 16 16 2 4
,

15 9 36 45 2835
          

 

 M  

So by using the series terms, solution can be written as, 

   0 1 2 3 4, ,n           L
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  2 2 3 4 54 2 4

, 1 2 2
3 3 15

n e               L
  (22) 

Result is rapidly convergent to below equation,  

   2 2,n e e     
        (23) 

Equation (23) provides the exact solution and (22) provides the He-Fractional Fractional-Laplace 

approximated solution. 

 
Figure 3: The given diagram explain the exact solution of Example 2. 

 
Figure 4: The given diagram explain the He-Fractional Fractional-Laplace solution of Example 2. 

4. Conclusion 

In this research, He–Fractional-Laplace technique has been shown to solve non-linear and linear 

partial differential telegraph equations which elaborate the behavior of current and voltage in an 

electric transmitted line with different distance and time. It is shown that the proposed technique 

provides the easiest steps for Lagrange identifier other than already existing techniques like VIM 

and ADM (Adomian Decomposition Method). I t is concluded from the existing results in this 
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study that He–Fractional Laplace technique is quite suitable and reliable for resolving initial value 

problems as well boundary problems in applied sciences. On the behalf of above computation, 

following results are drawn. 

1. The results obtained by this technique shows the efficiency of He-Fraction Laplace 

homotopy perturbation techniques. 

2. The proposed method has less error, avoid the assumptions and discretization of variables. 

3. Partial differential linear and nonlinear equations can be solved by the proposed method 

and the exact solution can get after some iteration. 

4.  This proposed has direct command for LM in both case of linear and nonlinear 

phenomenon. 

5. From the above all discussions, it is cleared that the proposed technique is not only 

restricted to solve nonlinear vibration phenomenon. It is valid form also other nonlinear and 

linear problems. 
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