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Abstract   

This study's primary objective was to create nanotechnology-based, precisely regulated drug 

delivery devices. Antibiotic Amoxicillin was chosen, and chitosan nanoparticles (CSNPs) were 

chosen to transport the medicine. Using the ionic gelation process, chitosan solution NPs were 

synthesized using tripolyphosphate (TPP). Antibiotic-loaded chitosan nanoparticles (CSNPs) were 

then used to create a nanocomposite with good performance. The resultant nanocomposite can be 

put to use as an effective, non-toxic antimicrobial agent. CMCS has a considerably wider range of 

uses as an anti-bacterial agent than chitosan since it is soluble in a wide pH range. Due to its water 

solubility, Ten S. mutans isolates were purified in two mediums, making it easy to use and elicit a 

variety of biological activities of CMCS in pharma and cosmetics.  Tryptone yeast extract cysteine 

sucrose mitis salivarius bacitracin agar. MS colonies on MSBA plates were blue, spherical or 

ovoid, 1-2 mm in diameter, with elevated surfaces that stuck well to the agar. Rough colonies had 

a rough or frosted glass surface. Samples treated with chitosan, carboxymethyl chitosan, chitosan 

nanoparticles, and their nanocomposite containing antibiotics (Amoxicillin) stymied the growth of 

Streptococcus mutans. Chitosan nanoparticles and their loaded antibiotics were discovered by 

scanning Electron Microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). In 

addition, the cytotoxicity of both the nanocomposite and amoxicillin loaded on nano-chitosan were 

compared to that of amoxicillin alone. PH 4.5 with a drug/polymer ratio of 1:2 (w/v) resulted in 

89.33% entrapment and 53% loading efficiency for Amoxicillin in terms of their particle size, 

surface charge, bond interaction, and shape, respectively. A zeta potential of +24.5 mV and an 

average particle size of 258 nm were found through analysis. The results showed the superior 

antibacterial efficacy of the AMX-CSNPs. It can be concluded that AMX-CSNPs and CSNPs 

displayed acceptable physicochemical characterizations, and effective antimicrobial activities 
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against Streptococcus mutans. These formulations could enhance drug delivery for treating 

cariogenic bacteria causing dental caries. 

Keywords: Chitosan nanoparticles CSNP, carboxymethyl chitosan CMC, Fourier-transform 

infrared spectroscopy FTIR, Polydispersity Index PDI, ζ –average Zeta potential. 

 

1. Introduction 

Dental caries (dental decay) can inflame, kill vital pulp tissue, and transmit infection to the 

tooth's periapex. Acidogenic plaque bacteria cause sickness (1). S. mutans, a crucial component of 

dental plaque, is often considered the foundation of the oral microbiota. Tooth decay (also known 

as "thetal caries") can cause inflammation and death of the pulp tissue, spreading infection to the 

tooth's periapex. Acidogenic plaque bacteria can lead to various illnesses (2). S. mutans, a crucial 

component of dental plaque, is often considered the foundation of the oral microbiota. Cariogenic 

bacteria like Streptococcus and Lactobacillus produce lactic acid during carbohydrate 

fermentation, lowering the local pH below the threshold value and demineralizing the tooth 

surface(47,48). Nanomaterials' compact size and high surface area per unit mass improves solution 

binding and dispersibility. Its antibacterial properties come from binding with proteins, plaque, 

and harmful bacteria. Nanoparticles' size and high surface-to-volume ratio may make them 

antimicrobial (46). They should interact closely with bacterial membranes to produce an antibiotic 

effect (3). Metallic and other nanoparticles combined with polymers and other base materials can 

be placed onto surfaces for antibacterial and anti-adhesive purposes (4, 5). Biomedical applications 

use chitosan because it is nontoxic, biocompatible, and antimicrobial. Deacetylating crustacean 

exoskeleton chitin produces the biopolymer chitosan. Positively charged chitosan dissolves in 

acidic to neutral liquids and sticks to mucosal surfaces. Regional medicine distribution may use 

chitosan nanoparticles (6). Chitosan is a cationic polymer made up of N-acetylglucosamine and 

glucose amine in a repeating structure. Protein carriers, drug administration, and wound healing 

are only some of the biological uses that could benefit from this material's biocompatibility, 

biodegradability, and nontoxicity (7-8). CSNPs excel in these areas due to their size, shape, and 

zeta potential. CSNPs can transport drugs (9, 10), vaccinations (11, 12), and even genes (13, 14). 

Studies have shown that chitosan nanoparticles are more effective than chitosan itself at 

eliminating bacteria and viruses (19). Slowly releasing medicines from chitosan nanoparticles may 

increase their solubility, stability, effectiveness, and toxicity (15, 16). Chitosan nanoparticles can 

be made in a number of ways (17). These include molecular self-assembly, template 

polymerization, reverse micelle, and emulsion cross-linking. When deciding on a preparation 

process, it is important to consider particle size, heat and chemical stability, as well as the stability 

of the finished product (18). 

The study's objective is to investigate whether chitosan-based nanoparticles could improve 

antimicrobial treatment. Many antimicrobial treatments are less effective when they can't get into 

cells. Some antibiotics, like amoxicillin, can be used without side effects to treat cariogenic 

bacterial infections better. 
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2. Materials and Methods 

Chemicals used as analytical reagents were not purified. Merck Chemical Co. provided chitosan 

(MW = 60-120 kDa, deacetylation degree 85%), TPP, glacial acetic acid, and amoxicillin. 

Absorbance was measured using a PerkinElmer Lambda 25 spectrometer (Waltham, MA, USA). 

Morphological examination using SEM (TESCAN, MIRA III) was performed. Spectra were 

obtained using an FTIR spectrophotometer (Termo, AVATAR). The size distribution of NPs was 

determined using a Zetasizer Nano ZS dynamic light scattering spectrophotometer (Malvern 

Instruments, Malvern, UK). Solar energy produces Carboxymethyl Chitosan. Weight 220, 

Formula: C8H14NO6 Around 80% of the time, you can substitute. 

By letting 100 mg of CS dissolve in 100 mL of 1% acetic acid at room temperature overnight, the 

mixture was filtered using a 0.45 millimeter syringe filter. The addition of the ice cold TPP solution 

to the heating CS solution mixture resulted in the spontaneous generation of CSNPs. The synthesis 

of CSNPs was evidenced by opalescence in cloudy solutions. CSNPs were synthesized at pH 3.5, 

4.5, 5.0, and 5.5 with CS to TPP mass ratios of 3 to 1, 4 to 1, and 5:1, respectively, and then 

analyzed by DLS. AMX was added to a solution of CSNPs at various drug/polymer ratios (1:1, 

1:2, 1:3, 2:1, and 3:1) to create drug-loaded nanoparticles. The nanoparticle suspensions were 

centrifuged at 18,000 rpm for 30 minutes after being agitated for 1 hour. Pellets were lyophilized 

and stored to evaluate drug loading efficiency. AMX-CSNPs solution free Amoxi was calculated 

by monitoring absorbance at 317 nm. We compared two AMX standard curves. The comparison 

of two AMX standard curves was performed to ensure accuracy in determining free AMX 

concentration in the CSNPs solution, as monitored by absorbance at 317 nm (19). 

2.1 AMX+CSNPs: A Characterization 

Zetasizer Nano ZS (Malvern Instruments, UK) was used to determine particle size and zeta 

potential. The He-Ne 633 nm laser was used to take the measurements at room temperature (25 

°C). Overnight at room temperature, stabilization and sonication were performed on samples 

before measurements (19). DLS analysis was used to determine the size of the particles and surface 

charge of CSNPs synthesized at several pH levels (3.5, 4.5, 5.0, and 5.5) using CS to TPP mass 

ratios of 3:1, 4:1, and 5:1. 

2.2 Fourier-transform infrared spectroscopy (FTIR): 

FTIR of intact CLM, NPs, and physical mixture were obtained from FTIR spectrophotometer: 

model (Teramo, AVATAR) Spectra were obtained by ATR technique. The scanning range was 

4000-400 cm-1 (19). 

2.3 Scanning Electron Microscopy (SEM): 

The nanoparticles' morphology was studied with scanning electron microscopy (SEM). After being 

air-dried at ambient temperature, the NPs were sputter coated with gold, mounted on metal stubs 

with adhesive tape, and examined using a scanning electron microscope (TESCAN, MIRA III) 

under high vacuum at an acceleration voltage of 20 kV. 

2.4 Drug entrapment study 

Nanoparticle yield is the theoretical weight of the polymer and medicine used minus the 

nanoparticle weight. After dispersing nanoparticles by weight in 10 ml of PBS (pH 7.4), incubating 
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for 25 minutes, and centrifuging at 19000 rpm for 20 minutes, the encapsulation efficiency was 

calculated. Amoxicillin absorbance of 247 nm was found in the supernatant. Amoxicillin loading 

capacity (L.C.) and amoxicillin encapsulation efficiency (A.E.E.) of the nanoparticles were 

determined using the following formulas. (19) 

Entrapment efficiency = (Drug Total − Drug free)/Drug total   × 100 

Loading capacity = (Drug Total − Drug free)/Weight of the nanoparticles   × 100 

2.5 Assay Cytotoxicity for Nano chitosan, amoxicillin and amoxicillin loaded chitosan nano 

particles  

The study investigates the growth and extracts of MCF-7 breast cancer cells. MTT assesses cell 

viability. A 24-hour 96-well plate experiment seeded 10,000 MCF-7 cells. Cells received different 

extracts after 24 hours. Cell viability was assessed after medium removal using MTT (5 g/L in 

PBS, pH 7.4) for 4 hours. Active cells precipitate MTT-soluble DMSO-soluble formazan. After 

gently shaking the plate to disperse the precipitate, absorbance was 570 nm instead of 630. Stable 

absorbance showed cell viability. Linear regression determined the extracts' 50% median lethal 

concentration (LC50), which halves cell viability. MCF-7 cells are seeded into a 96-well plate, 

treated with different extracts, assessed for viability using the MTT assay, and estimated for LC50s 

using linear regression analysis (20). 

 

3.  Results  

Amoxicillin-CSNPs had their drug loading and encapsulation efficiency maximized out using 

spectrophotometry. To quantify the amoxicillin loaded into CSNPs, the derivative o- 
Phthaldialdehyde Reagent was utilized to observe a shift in absorbance at 340 nm. Maximum 

encapsulation (89.33 2.7%) and loading efficiency (53.2 2.4) were observed in the formulation 

containing amoxicillin-CSNPs at a ratio of 1:2. Using dynamic light scattering, the hydrodynamic 

size and surface charge of CSNPs/AMOXICILLIN CSNPs in an aqueous media were determined. 

The poly-dispersity index for AMX-CSNPs was 0.19, and their average particle size was 258 nm 

(Figure 2a). For efficient medication distribution, it is crucial to pay attention to particle size and 

surface charge. Zeta analysis reveals the size distribution of the produced nanoparticles in Figure 

3(A). AMX-NP's mean particle size is 258 nm. 

Table 1. UV-visible spectrophotometer analysis of AMX-CSNPs encapsulation and loading effectiveness. Mean 

standard deviation (n = 3). 

CSNPs: 

AMX 

ratio 

Encapsulation 

efficiency (%) wt 

Drug loading 

(%) wt 

Particle size 

 

Polydispersity 

Index 

PDI 

Zeta potential 

1:1 69.05 ± 1.35 27 ± 2.2 237 ± 33.1 0.65 10.5  ± 4.4 

1:2 89.33 ± 2.7 53 ± 2.4 258 ± 46.5 0.19 24.5 ± 4.8 

1:3 85.28 ± 3.1 42 ± 1.9 314 ± 45.9 0.38 18.3 ± 4.8 

2:1 38.54 ± 2.8 29 ± 2.3 368 ± 23.9 0.32 15.8 ± 4.8 

3:1 39.39 ± 6.5 26 ± 1.6 289 ± 5.8 0.44 14.4 ± 4.9 
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Figure 1. Employing the Zetasizer Nano ZS, we determined the particle size distribution and Zeta potential value of 

various CSNPs to characterize their size and surface charges.  A 2:1 Amoxi ratio 

 

3.1 Fourier Transform Infrared (FT-IR) analysis  

The interaction between CS and Amoxicillin which confirms the encapsulation of Amoxicillin 

into the Nano carrier. Was identified by using FT-IR Technique:  

In the image below, we can see the FTIR spectra of CSNPs, AMX, and AMX-CSNPs. CSNPs 

showed a peak at 3500 cm1, consistent with the NH vibrational frequency, while AMX-CSNPs 

red-shifted to 3446 cm1, possibly due to the hydroxyl stretch (-OH). It is normal for C-H stretch 

vibrations to exhibit a peak at 2925 cm1. N-H bending in the NP causes a peak at 1627 cm1 that 

is red-shifted to 1634 cm1 in drug-loaded nanoparticles. We observed peaks at 1540 and 1558 cm1 

due to the N-H bending of the amine in amoxicillin-specific nuclear peptides (-CSNPs). The drug's 

strong peak at 1053 cm1 and red shifts to 1098 cm1 were both caused by C-O stretching. Finally, 

we observed an 897 cm1 change in C-H out-of-plane bending. As a result, we know that CSNPs 

are loaded with AMX.  

 

 

 

 

 

 

 

Figure2: FTIR spectra of CSNPs (green), Amoxicillin (red), AMX-CSNPs (black) 

3.2 Morphology 

Figure 3 displays the SEM of amoxicillin-loaded chitosan nanoparticles. The size of the particles 

fell within the nanoscale range, exhibiting a relatively spherical and regular form. We confirmed 

that the particles fall within the nanoscale range, possessing a smooth surface texture and a regular 

spherical shape. 
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Figure 3: SEM showing chitosan nanoparticles loaded with chitosan nanoparticles 

 

3.3 The MTT cell viability assay for cytotoxicity testing 

The statistical analysis demonstrated no significant cell inhibition with varied concentrations of chitosan 

nanoparticles, amoxicillin, and amoxicillin-loaded Nano Chitosan with TPP. The study materials are safe and 

non-toxic to MCF-7 breast cancer cells at various doses. Table 2 and Figure 3 a,b,c showMCF-7 cell cytotoxicity 

of chitosan nanoparticles, amoxicillin, and amoxicillin-loaded Nano Chitosan. The graphic shows that cell 

viability remained unaffected at all concentrations. This suggests that these materials are safe for cancer 

treatment and do not harm breast cancer cells. Figures 3 (B, C, D, and E) exhibit blue fluorescence staining 

(Hochst) of active nucleus cells. Image (b) shows breast cancer cell viability before therapy. Images (C-E) show 

MCF-7 cells that survived treatment with chitosan nanoparticles and amoxicillin-loaded Nano Chitosan with 

TPP at 16 to 250 μg/ml. Using pictures b to e, chitosan nanoparticles and amoxicillin-loaded Nano Chitosan with 

TPP were non-cytotoxic. Thus, they may be used as antibacterial and antifungal drugs in organs without harming 

healthy or sick cells. They can also fight oral infection-causing germs. 

                       (a) Control (no. treatment)                                  (b) 16 (µg/ml) Concentration                            (c) 62(µg/ml) Concentration             

       (d) 125 (µg/ml) Concentration                            (e) 250 (µg/ml) Concentration                           (f) 500 (µg/ml) Concentration            

Figure 4.  Relative cell viability of Amoxicillin loaded chitosan nanoparticles (a) Control (no. treatment), (b) 16 (µg/ml), (C) 

62(µg/ml), (d) 125 (µg/ml), (e) 250 (µg/ml), (f) 500 (µg/ml). 
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Table 2. Show The MTT cell viability assay for cytotoxicity testing 

 

3.4 Isolation of S.mutans 

Ten S.mutans isolates were purified in two mediums. Tryptone yeast extract cysteine sucrose mitis 

salivarius bacitracin agar Bacitracin Agar. The blue, spherical or ovoid, 1-2 mm in diameter MS 

colonies on MSBA plates had raised surfaces that adhered well to the agar. The surface of rough 

colonies was rough or frosted glass. While smooth colonies were spherical. Most MS colonies had 

a dip in the middle with a polysaccharide drop, although others were completely immersed (Figure 

5). 

Figure 5. (a) S.mutans and colonies on Mitis Salivarius Bacitracin agar (b) S.mutans colonies on TYCSB selective 

agar. 

3.5 The Anti-Bacterial Activity of different chitosan compounds against S. mutans  

By measuring the mean inhibition zone diameters of the ten bacterial isolates in mm using a ruler, 

we were able to estimate the antibacterial activities of chitosan, carboxymethyl chitosan, chitosan 

nanoparticles, amoxicillin loaded on chitosan nanoparticles, and amoxicillin. 

The MTT cell viability assay for cytotoxicity testing 
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Table 3.  Values of inhibition zone for the five groups of compounds against Streptococcus mutans. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The inhibition zone (IZ) of S. mutans isolates against five compound (CS, CSNPs CMC, Amoxicillin loaded 

on CSNPs, Amoxicillin) 

Compound Conc. (Mg/ml) Min Max Mean SD F-Test P-Value 

Cs 10 15 17 15.86 0.76 304.672 0  
5 12 13.65 12.74 0.54 

  

 
2.5 10.5 12.32 10.93 0.66 

  

 
1.25 8.5 10.5 9.05 0.69 

  

 
0.625 6 7.59 6.69 0.5 

  

CMC 10 15.5 18.32 16.49 0.96 219.907 0  
5 13 14.44 13.34 0.51 

  

 
2.5 10 12.5 11.5 0.78 

  

 
1.25 9 11.86 9.69 0.94 

  

 
0.625 6 7.88 6.82 0.59 

  

CSNPs 10 18 21.5 19.14 1.12 298.81 0  
5 15 16.6 15.63 0.53 

  

 
2.5 12 14.39 13.28 0.75 

  

 
1.25 9.5 11.85 10.59 0.91 

  

 
0.625 7 8.5 7.74 0.56 

  

AMX + CSNPs 10 24 29 26.41 1.79 131.759 0  
5 20.1 26 22.9 2.33 

  

 
2.5 16.32 20.3 18.12 1.33 

  

 
1.25 13 17 15 1.13 

  

 
0.625 9.5 12.63 11.66 1.3 

  

AMX 10 19 24.7 22.17 1.86 157.139 0  
5 15.4 20.5 18.59 1.46 

  

 
2.5 12.8 16.5 15.72 1.14 

  

 
1.25 10.18 13.6 12.64 0.97 

  

 
0.625 8 10 8.93 0.76 
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Table 4. Values of MIC and MBC for the five groups of compounds against Streptococcus mutans. 

 

4.  Discussion 

     Chitosan, a cationic biocide used for external cleaning, was used in our study because it attacks 

bacterial cell membranes. Sudarshan et al. found that chitosan's amino group binds to bacterial 

surface components and limits their growth. At lower concentrations, chitosan may have adhered 

to the negatively charged bacterial surface, causing the cell membrane to rupture and release 

internal components, killing the cell. It's possible that a chitosan coating on the bacteria prevented 

them from leaking their internal ingredients and stopped the transfer of large amounts of mass 

across the cell membrane. Partially deacetylating chitin produces chitosan, a biopolymer with 

applications in the food, pharmaceutical, and chemical industries (21, 22). Antimicrobial chitosan 

prevents cavities (22). Chitosan is a nanoscale antibacterial, medication, gene, vaccine, and anti-

tumor agent. Modified chitosan derivatives like CMC have increased antibacterial activity (23–

24). Because chitosan is insoluble above pH 6.5, it is only bactericidal in acidic environments. 

Water-soluble, acidic-, and basic-soluble chitosan derivatives may be acceptable for the 

polycationic biocide (25). Because CMCS is pH-soluble, it is more antimicrobial than chitosan. 

Water solubility makes CMCS an appealing complexation agent for medicinal and cosmetic 

purposes. Water-soluble chitosan compounds were harmful to cancer cells but not to normal cells 

(26, 27). Since dentists recommend amoxicillin for mouth infections, we put it on nanochitosan. 

Parameter compound No Minimum Maximum Median p-value 

MIC Chitosan 10 2.5 2.5 2.5 0.000 

CMC 10 2.5 2.5 2.5 

CSNPs 10 1.25 2.2 2.5 

AMX 10 1.25 1.25 1.25 

AMX+CSNPs 10 0.625 0.625 0.625 

MBC Chitosan 10 5 5 5 0.000 

CMC 10 5 5 5 

CSNPs 10 2.5 5 5 

AMX 10 2.5 2.5 2.5 

AMX+ CSNPs 10 0.625 0.625 0.625 

MBC\MIC Chitosan 10 2 2 2 0.000 

CMC 10 2 2 2 

AMX 10 2 4 2 

CSNPs 10 2 2 2 

AMX+ CSNPs 10 1 1 1 
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Amoxicillin enhances oral microbiota resistance. We observed an increase in oral streptococci 

resistant to amoxicillin (28). 

The CS/TPP ratio has an impact on the size and biology of CS nanoparticles (37). This study found 

that ion-charge interactions resulted in the best size distribution at 4:1 CS/TPP. Drug-loaded 

nanoparticles were produced. PH reduced the average chitosan NP particle size. PH and ionic 

strength (38). Tsai et al. studied CS/TPP nanoparticle size and storage solution ph. Nanoparticles 

shrank as pH increased. Based on the findings, the optimal size distribution was achieved at a 

CS/TPP ratio of 4:1 due to ion-charge interactions. The nanoparticles produced were loaded with 

drugs. The average size of chitosan nanoparticles was decreased by pH and ionic strength. Tsai 

and colleagues researched the effect of nanoparticle size and storage solution pH in CS/TPP. Tsai 

and colleagues examined the effect of storage solution pH on the size of CS/TPP nanoparticles. 

They found that nanoparticles decreased in size, leading to a reduction in the overall increase. 

Additionally, high drug concentrations during gel formation resulted in decreased interaction 

between CS and TPP, leading to the formation of larger particles. AMOXI-CSNPs are less 

homogeneous than interfacial depositions. All formulations showed a low PDI (0.4) and size 

variation. From 0 to 1, PDI measures mixture molecule or particle size heterogeneity. PDI values 

that are above 0.5 indicate significant heterogeneity (39).  

Zeta potential has an impact on nanoparticle stability and mucoadhesivity (40). Gel-formed 

protonated amine groups increased zeta potential. Studies show that nanoparticles with higher zeta 

potentials are more stable. Electrostatic repulsion disperses charged particles (40). Long-chain 

amino groups in CS make a big electrical double layer that soaks up TPP anionic groups and stops 

them from sticking together (22). Increasing formulation CS/D ratios does not improve loading 

efficiency. Nanoparticle size, without aggregation, improved amoxicillin loading in CSNP 

solutions at pH 4.5. Precipitation occurred as the CS solution pH rose over 5.0, notably around 6.5. 

If its pH is below pH 4.2, chitosan's hydrogen ions partially neutralize TPP's hydroxide ions. 

Hydroxide ions do not deprotonate chitosan. Tripolyphosphoric ions connect protonated amino 

groups despite intramolecular electrostatic repulsion (30). PH impacts nanoparticle size. Table 2 

demonstrates the spectrophotometrically calculated maximum drug loading and encapsulation 

effectiveness of Amoxicillin-CSNPs. The 1:2 Amoxicillin-CSNP formulation achieved the highest 

encapsulation and loading efficiencies, 89.33 2.7% and 53 2.4%, respectively. Increased 

amoxicillin or CSNP ratios reduce drug loading and encapsulation efficiency. Research supports 

these conclusions. (41, 42) The hydrodynamic size and surface charge. As drug loading increases 

the particle size, the amoxicillin amine group may cross-link with CSNPs. Shielding widens the 

particle size range, thereby reducing electrostatic attraction and elevating electrolyte ions, 

ultimately leading to a decrease in the water layer on the surface (30). Shielding particles reduces 

electrostatic contact, increases electrolyte ions, and thins the surface hydration layer (30). AM's 

amino group boosted amoxicillin-CSNPs' zeta potential to +24.5 mV. Residual amine groups 

boosted gentamicin-loaded CSNPs' zeta potential (43). Positive ions increased amoxicillin-CSNPs' 

zeta potential, stability, and antibacterial activity. Amoxicillin-CSNPs' stability showed that their 

surface has a large electric charge, which repels aggregation. Zhang et al. (44) believe that a big 
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positive potential minimizes particle agglomeration. SEM investigated amoxicillin-CSNP 

morphology. The amoxicillin-CSNPs were spherical at 200–300 nm. These may have influenced 

grouping. Drying lowers particle size, raises specific surface energy, and boosts CS hydrogen bond 

interaction, which may have promoted amoxicillin-CSNP clustering. In amoxicillin-CSNPs (30), 

the hydrogen bond interaction dominates drying. Particles gravitate without resistance. The zeta 

potential is constant above -30 mV or +30 mV (23). CSNPs are cationic because of the 

biopolymer's amino groups. Concentration increased chitosan viscosity, lowering drug 

encapsulation. Ionic drug-polymer interactions may capture nanoparticle drugs. 

 

5. Conclusion 

    The AMX-CSNP preparation method is used. The CSNPs were made using a 4:1 CS to TPP 

ratio at a pH of 4.5. The M 1:2 formulations of CSNPs demonstrated maximum treatment 

effectiveness. Drug capsules. FTIR was used to detect AMX-CSNP bonding. Based on zeta 

potential measurements of +24.5 mV, DLS studies found that the average size of AMX-CSNPs 

was 258 nm. AMX-CSNPs exhibited both elemental analyses and dispersed spherical 

nanoparticles in experiments with S. mutans, AMX-CSNP demonstrated greater effectiveness than 

AMX alone. By enhancing AMX's antibacterial properties, CSNPs help AMX to better penetrate 

the bacterial cell membrane despite the presence of exotoxins. Finally, AMX-CSNPs did not kill 

MCF-7 cells in vitro. These findings suggest that AMX-CSNPs can enhance the therapeutic 

efficacy of AMX and facilitate the delivery of medications against cariogenic infections. 
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