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Abstract

The goal of this work, is to examine the concept of a double centralizer ( T, S ), and double
Jordan centralizer on prime and semiprime I'-rings, this is done by studying examples ,remarks
and results related to that concepts and looking for the conditions under which T equal S, we
prove the results, the first result , let A be a semiprime I'-ring and T is a left centralizer, S is a
right centralizer, and they fulfilling x @ T(y) =S (X) a y, foreach x € A, @ € T, thence (T,S)
is a double centralizer. The second, let A be a prime I'-ring, U be a not equal zero ideal of A,
such that, T is a left centralizer, S is a right centralizer, and fulfilling x aT(y) =S (X) a v, for
each X,y € U, a € T, thence (T, S) is a double centralizer. The third, let A be a prime I'-ring, U
be a not equal zero ideal of A and we get, if T=S on U, thence T=S on A.
Keywords: Prime I'-rings, Semiprime I'-rings, centralizer, Jordan centralizer, double centralizer,
double Jordan centralizer.

1. Introduction

Barnes (1) defined I'-ring. Let Aand I be two additive abelian groups. It there is a
mapping (x,a,y) = (x a y) of A X T X A — A, satisfying the following, for any x, y,z € A and
a,B Er.
i. (x+yaz=xaz+yaz,

x(o + B)y = xay + xBy,

xa(y + z) = xay + xaz,
.  (xay)Bz = xa(yBz), thence A is named a I'-ring.
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OZDEN et al. (2) defined the subring. A subring of I'-ring A is additive subgroup S of A such
that STS = S . Let A be a I'-ring, thence A is named a commutative gamma-ring if, xay = yax,
holds for any x,y € A and a €', Kandamar et al. (3). A subset U of the I'-ring A is a right (left)
ideal of A if U is an additive subgroup of Aand UT'A = {aax:a € U,a € T,x € A} (AI'U) is
contained in U. If U is both a left and a right ideal, thence U is a two-sided ideal, or simply is an
ideal of A. Barnes (1). A T'-ring A is named prime if m['AT'n = (0) withm,n € A impliesm =
0 or n = 0 and semiprime if mI'AI'm = 0 with m € A impliesm = 0 (4, 5). An ideal P of a
gamma-ring A is prime ideal if for any ideals N,MCA, N'MC P implies NS P or MC P, Kyuno
(5). A gamma-ring A is said to be prime I'-ring if the zero ideal is prime ideal, Kyuno (5). Let A
be a I'-ring, thence A is named n-torsion free if nx = 0, yields x = 0, for every x € A, where
n is positive integer, Chakraborty et al. (6). Let A be a gamma-semiring, an element1 € A, is
named unity forany x € Athereare @« € I'suchthatxa1= 1ax = x, RAO (7). Ozkum
et al. (8) defined the derivation and (Jordan derivation), let A be a gamma-ringandD : A = A
and additive map. Thence D is derivation (resp.Jordan derivation), if D (man) =
D(m)an + maD (n) (resp.D (mam) = D (m)am + ma D(m)), forany m,n € Aand
a €T, Ozkum et al. (8). Every derivation of A, is Jordan derivation but the converse in
general is not true, see Saleh (9). Barnes (1) defined the I'-homomorphism. Let A and Y both be
r-rings, and @ a map of A in to A. Thence @ is a I'-homomorphism, if and only if @(xay) =
d(x)a® (y),forallx,y € Aand «a €T. If @ is also one-to one and onto thence @ is a I'-
isomorphism. An additive mapping @ of I'-ring A into a I'-ring A' is named Jordan
homomorphism if @(xay + yax) = @(x)a@d(y) + @(y)ad(x), for each x,y € A and a €T,
Shaheen (10). Let A be a I'-ring, a mapping d of A, to itself is named I'-centralizing on a subset
Sof Aif[x,d (x)], € Z(A), foreveryx € Sand a € T,inthe special case when [ x,d (x)], =
0, hold for any x € S and a € T, the mapping d is named I'-commuting on S , Sameer et al. (11).
Many researchers have studied centralizers and derivations in prime and semiprime I'- rings (12-
21) and (22-30). The objective of this paper is to debate, double centralizer (T, S ), and double
Jordan centralizer on prime and semiprime I"- rings, with fulfilling certain identities.

2. Preliminaries and Fundamentals
2.1 Definition
Ali et al. (18) Let Abe a gamma-ring, for any x,y € A and «a €T, the symbol [r,t], =
rat- tar,tosymbolize the commutator. T(ret) =rat+ tar.
2.2 Lemma
Alietal. (18) If A isa gamma-ring, forany r,t,s € Aand o, 8 € T thence:
l. [rt]le + [t,7]e =0
Il. [r+¢t,s]a=]r s]lot[t s]a
. [r,t + s]a= [r, t]la+][r, s]a
IV. [r,t]ot+B= [r, t]oa+][r, t]p
V. [rBt,s]lq = rP[t,S]le + [, S]a Bt +Trsat-rasft.
2.3 Definition
Hoque 20(19) An additive mapping T: A — A is a left (right)centralizer, if T(rat) =
T(r)at(T(rat) =raT(t)) holdsforanyr,t € Aand a € I'. A centralizer is both a left
and right centralizer.
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2.4 Example
Let F be a field, and D, (F)be a diagonal matrices 2 by 2 over Fand I' = { [8 g] n € Z},
define T: D, (F) = D, (F) as

T(g 2])=8 2],foranya,beF.

Thence T is a centralizer.

2.5 Definition

Hoque (19)An additive mapping T: A — A, is Jordan left (right) centralizer, if T(xax) =
T(x)ax (T(xax) = xaT (x),forany x € Aand a €T.

2.6 Definition

Let A be gamma-ring, let T,S: A — A, be an additive mappings, thence a mate ( T, S ) is named
a double centralizer, if T is a left centralizer, S is a right centralizer, and they satisfy a balanced
requirement, xa T(y) = S(x) ay ,foranyx,y € A, a €T.

2.7 Definition

Let A be gamma-ring, and let T,S: A — A, be an additive mapping, thence a mate (T,S) is
named a double Jordan centralizer, if T is a left Jordan centralizer, S is a right Jordan centralizer,
and they satisfy a balanced requirement, (xa T(x) = S(x) a x), foranyx € A, ¢ € T.

3. Main Results
In the following, we give the definition of commuting double centralizer:
3.1 Definition
Let Abear-ring, and (T, S), be a double centralizer. Thence (T, S), is named commuting double
centralizer, if T and S are commuting.
Now, we shall give an example for a commuting double centralizer.

3.2 Example
Let F be afield, and A be a I'-ring of all triangular matrices of the from
d @ c b 000n
—(0 40 ¢ _Joooo
x={y 0 d _q |/forallabed €F}, and T={| = | foralln€Z}.
000d 0000

In connection to the frequent process of addition and multiplication and let T, S: A—A be additive
mappings defined by

T(x) = yax and S(x) = xay, foreach x,y € Aand a €T.

Where;

000
y = 8 88 ,forallb € F.

00O00O0
Itis clear that T and S are commuting double centralizer.
In the following results, we give some certain conditions to obtain (T,S) is a double centralizer,
where T and S are from A to A.
3.3 Theorem
Let A be a semiprime I'-ring and T, S: A— A be a mapping fulfilling.
xaT(y) = S(x)ay, foreach x,y € Aand a €T. (1)
Thence (T, S) is a double centralizer.

332



IHIPAS. 2025, 38(2)

Proof: We need to show that T, S are additive mapping, and
Txay)=Tx)ay,forallx,y e Aanda €.
Sxay)=xaS(y), forallx,y€e A,a €T.
Now replace y by y+z in (1), we imply
xaT(y+z)=Sx)ay +S (x)az, foreachx,y,z€ Aand a € T.
Hence
xa(T(y+2z)— T (y)—T(z)) =0,forallx,y,ze Aand a €T.
By the semiprimeness of A, we imply
T(y+z) =TW)+ T (z),foreach y,z€e A.
Similarly, we can show that
S(x+y)=85(x)+S (y),foreach x,y,€ A.
Now, replacing y with ySz in (1) we obtain
xa (T (yBz)—T (y) Bz) =0,foreach x,y,z€ Aanda, FET.
By the semiprimeness of A, we imply
T(wpBz) =T )Pz foreach y,z € Aand B €T.
Similarly, we can show
Sxay) =xaS(y),foreachx,y€e Aanda €.
Thence (T, S) is a double centralizer.
Now, we give some results which make T=S under different conditions, where (T,S) is double
centralizer.
3.4 Theorem
Let A be a prime I'-ring, U be a not equal zero ideal of A. Let T, S: A — A be additive mappings
such that T is a left centralizer, S is a right centralizer and they gratify xaT (y) = S(x)ay, for
each x,y € U and a € I'. Thence (T,S) is a double centralizer.
Proof: We have
xaT(y) = S(x)ay,foreach x,y € Ua € I. (2
Replace x with xBr in (2) when x € U, € ' and r € A, we imply
xBraT(y)—S@)ay)=0,foreachr € A,x,y € Uand a,pB €T.
ie.
xyAB(raT(y)— S(r)ay)=0,foreach r € A,x,y € Uand a,B,y € T.
By primeness of A and since U be a not equal zero ideal of A, we imply
raT(y) =S(r)ay,foreachr € A, yeUanda €T. 3)
Replacing y with tay in (3), wheret € A, y € U,andc €T.
(raT(t)— S(r)at)cy =0,foreach t,r€ A, yeUand a,0 € I'.
Implies that
(raT(t) — S(r)at)oUSA = 0, foreacht,r e Aand a, 0,6 €T.
By the primeness of A, we imply
raT()= S(r)at,foreacht,r € A,and,a € T.
3.5 Theorem
Let A be a prime gamma-ring, U be a not equal zero ideal of A, and (T,S) be a double centralizer.
If T=S on U, thence T=S on A.
Proof: We have
T (x) = S (x),foreach x € U. 4)
By replacing x with rax in (4), when r€ A, x €U and @ € ', we imply
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T(rH)ax =raS(x)= ralT(x),foreache A, xeUanda €I . )
Since (T, S) are a double centralizer, (5) leads to

T(ryax =S (r)ax,foreachx eU,re A,anda € TI'.ie.

(T (r)—S(r))aUBA =0,foreachr € A,and a,B €T.

Since A is a prime I"-ring and U be a not equal zero ideal of A, we imply T =S.

From Theorem above, we imply the following:

3.6 Corollary

Let A be a prime gamma-ring, U be an ideal of A and (T, S) be a double centralizer. If,
T=S=0o0nU,thence T=S=00nA.

In the following theorem, we shall prove that T=S in case T acts as a homomorphism on A.

3.7 Theorem

Let A be a semiprime gamma-ring and let (T,S) be a double centralizer, if T acts as a
homomorphism on A, thence T = S.

Proof: We have

T(xay) =T(x)ay,foreachx,y € Aand a €T.

Since T is acts homomorphism on A, thence

TX)aTy)=TX) ay, forany x,y€e Aand a €T. (6)
On the other hand;

xaT(y) = Sx)ay,forallx,y€e Aand a €T. @)
The substation T'(x) for x in (7), gives

T(x)aT(y) =S(T(x))ay,foreachx,y € Aand a €T. (8)

By comparing (6) with (8), we arrive at (S(T(x)) = T(x)) ay =0

Multiply from the right by (S(T'(x)) — T(x)), we get

(S(T(x)) =Tx)By a (S(T(x)) — (T(x)) =0, foreach x,y € Aand a, €T.
By semiprimeness of A, we have

S (T(x)) = T(x), for each x € A. 9)
From (9) and using (7), we imply

T(x)aT(y) = T(x)aS(y),foreach x,y € Aanda € T. (10)
Replace x by xfz and y by yow in (7) and using (10), we arrive at

xBz aT(y)aS (W) =S(x z)ayow,foreach x,y,z,w € Aand a,,0,€ I. (12)

Thence by (11), we imply

xBS(z)ayoS(w) =S (xp z)ayow, forall x,y,z,w € Aand a,(,0 €T.

Whence it follows that

xpS(z)ayo(S(w) —w) =0, foreach x,y,z,w € Aand a,f,0 €T. (12)
The substitution on S (w)— w for x in (12), gives us

(Sw) —w)BpS(2)aya(S(w) —w) = 0, foreach y,z,w € Aand a, 3,0 €T.

Right multiplication the above relation by S(z), yields

Sw) —w)BS(z)aya(S(w) —w)yS(z) =0,forall y,z,w € Aand a, 3,0,y €T.

By the semiprimeness of A, we obtain

(S(w) —w)BS(z) = 0, foreach w,z€ Aand €T.

This gives

Sw)BS(z) = wpS(z),foreachw,z € Aand B €T. (13)
From (7) and (13), we obtain
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xaT(y) = Sx)aS(y) = xaS(y),foreachx,y € Aand a € T.

Of course, we have also,

xa(T(y) =S(y)) = 0,foreach x,y € A,and a €T.

By the semiprimeness of A, we imply T=S.

In the following theorem, we gives a relation between T and S, where (T,S) is a double centralizer
on prime I'-ring.

3.8 Theorem

Let A be a prime I'-ring, and U be a not equal zero ideal of A, we imply (T,S) be a double
centralizer. If T(r a x) = S(r)ax forall r € A,x € U,thenT = S.

Proof: We have

T(rax) =T(r)ax = S(r)ax foreachr,t e A,xeUanda €T.

This reduces to

(T(r) - S(r))ax =0,foreach re A, xeUanda €. (14)
Replacing x with tBx in (14), when t € A, x € U, a € T, leads to

(T(r) —S(r))atfx =0,foreach r € A,x € Uand a,p €T.

ie.

(T(r) =S(r))aABU =,foreach re Aanda,f €T.

Since A is a prime gamma-ring, and U be a not equal zero ideal, we have T = S.

3.9 Theorem

Let A be a prime I'-ring, and (T, S) be a double centralizer, if T acts as a not equal zero Jordan
homomorphism (T (xax) = T(x)a T(x)) for each x € A and a € I'. Thence T=S=id.

Proof : We have

T(xax) = T(x)ax, foreach x e Aand a €T.

Thence from above relation and since T is acts as Jordan homomorphism.

Yields,

T(x)a(T(x)-x) =0,foreachx € Aand a €T. (15)
Replace x by xB y in (15), we imply

Tx)Bya (T(x)- x)By =0,foreach x,y € Aand a,B €. (16)
Linearization (16), we imply

T)Bya(Tx)-x)Bz+ Tx)Bza(T(x)-x)By =0 17)

Now, replacing z by yoz in (17) and using (16), we obtain

Tx)ByaAy (T(x)- x)By,foreach x,y € A, a,B,y €T.

By the primeness of A, we imply

T(x) = x, foreach x € A. (18)
Otherwise, T=0. From xaT (y) = S(x)ay, and by (18), we imply T =S =id.

4. Conclusion

This work is to discuss double centralizer (T, S ), and double Jordan centralizer on prime
and semiprime I'- rings, with fulfilling certain identities. We prove that; when T is a left
centralizer, S is a right centralizer, and they fulfilling xaT(y) = S(x)ay, for eachx,y €
U and a € T. Then (T,S) is a double centralizer. Also if (T, S) be a double centralizer, T acts as
a homomorphism on A, then T=S, and if T acts as a not equal zero Jordan
homomorphism (T (xax) = T(x)a T(x)) foreachx € Aand @ € I. Then T =S =id,
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