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 Abstract   

     The problem of estimating the number of clusters, k, is considered one of the major challenges 

for partition clustering. The k-means algorithm is a division-based clustering method where only 

objects are entered into a set of K, and the algorithm decides the number group initially. Still there 

is no specific way to estimate the best number for the cluster. The outcome of the clustering process 

can be better after being performed in more than one attempt. Therefore, the optimal count of 

iterations can be identified through a steady method in advance that can determine the time and 

number of rounds. So, the problem is finding the optimal number (k) in an easy and fast way. The 

aim of this paper is to use a genetic algorithm (GA) with a new objective function to determine 

the best number of clusters of different types of datasets. The fitness function optimizes the 

heterogeneity among clusters and homogeneity within each cluster. Utilizing the gap statistic 

equation, the optimal number of clusters is determined in four standard datasets.  

Keywords: Clustering, K-means, Heuristic, Genetic Algorithm, Gap statistic. 

 

1. Introduction 

     Data mining is a highly powerful technique for retracting information and is useful for a large 

amount of technical and commercial data. This involves using a certain number of methods and 

strategies to check the data with a specified number of classes, clusters, and associations. 

Technology and various other fields widely use clustering algorithms in many applications. For 

example, marketing, pattern recognition (PR), information technology (IT), information retrieval 

(IR), artificial intelligence (AI), image processing, psychology, biology, and bioinformatics 

(gene expression analysis). Several clustering techniques were proposed to work on a range of 

the data. Such clustering algorithms could be defined on a category basis: clustering of portioning 

algorithms, clustering of fuzzy algorithms, clustering algorithms grid-based, clustering 

algorithms of hierarchy, and clustering algorithms density-based (1). K-means is one clustering 

technique that may be employed. Clustering falls within the domain of partitioning algorithms. 

The K-means clustering algorithm divides objects into k groups. To accomplish this clustering, 

the value of k should be specified in advance. The next step is to calculate the cluster centroid 
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(2-4). Among the several broad clustering methods, K-means is perhaps the best used. It still, 

however, has certain intrinsic limitations. One of the most difficult issues when utilizing K-means 

is identifying the best cluster number symbolized by K (5), where K represents a positive integer. 

However, K-means has a significant drawback: it frequently converges to a suboptimal solution 

due to the huge clustering search space. Thus, evolutionary methods such as the genetic algorithm 

are appropriate for grouping tasks. A good GA examines the search space appropriately while 

also using superior solutions to obtain the globally optimum solution (6). A typical explanation 

of the clustering aim is to maintain homogeneity within each cluster while increasing variability 

between clusters. The GA method will stop the maximum number of generations is created or 

when the maximum number of objective function evaluations is reached. This paper suggests a 

new objective method to find the optimal number of clusters using a genetic algorithm (GA) and 

solve the problem of many traditional methods used to find the best K, as each method gives 

different results from those applied to the same dataset.  

1.1. Literature Review 

There is no specific rule for determining the appropriate cluster number. Due to these limitations, 

the researchers used the evolutionary methods to solve the clustering problem, as follows: El-

Shorbagy et al. (7), research on combining K-means with the genetic method has executed 

clustering using this combined technique. It was discovered that genetic algorithms have the 

potential to split datasets into a variety of groups that were not recognized previously. By using 

label-based representation and K-means methods, which will enhance the offspring generated by 

cluster-based crossover, there will be no need to set the number of clusters. The clustering process 

is employed to get the central point, which decreases the complexity of the problem. A large-scale 

problem is divided into multiple minor issues, so these methods represent that GA is good for sub-

problems to increase speed and performance while handling tiny-scale combinatorial optimization. 

Some of the proposed techniques work more effectively and efficiently in terms of complexity and 

converge to the global optimum. In Hruschka, E.R. and Ebecken, N.F. (8), the study provided a 

way to find the ideal number for clustering a dataset. It created a genetic algorithm to perform this 

task. A simple encoding approach that results in constant-length chromosomes is utilized. The 

homogeneity between and within each cluster is optimized by the objective method. Besides, the 

clustering genetic algorithm also determines the appropriate group number based on the Average 

Silhouette Width requirement. It also created genetic operators that are context-sensitive. Four 

examples are supplied to show the effectiveness of the suggested strategy. The efficacy of the 

suggested method is illustrated by presenting the results obtained from four different data sets: 

data that is generated randomly, data on breast cancer, data from Ruspini, and data from the Iris 

plant. In each simulation, a population of 20 genotypes was examined, which, in turn, reflected the 

use of 21 clusters. Besides, 200 is set to be the maximum number of generations. The 

dissimilarities between items were calculated using the Euclidean distance measure. It simulated 

ten tests on each dataset; the best objective function value was first found. In a study by Liu et al. 

(9), the so-called clustering of Automatic Genetics, which is basically genetic algorithm-based 

clustering, is presented in this paper approach to Genetic Clustering for Unknown K (AGCUK). 

The AGCUK technique could automatically give the cluster number to define the division of 

clustering. Davies-Bouldin's index is used to evaluate the cluster's accuracy. Real-world and 

simulated datasets are experimented with to demonstrate the performance of the AGCUK 

algorithm. In a study by Rahman and Islam  (10), a novel GA-based clustering study strategy has 
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the capability of choosing the ideal number of clusters and genes using a selection approach of a 

novel initial population. The objective function and gene modification operation create high-

quality cluster centers. The centers are then passed to K-means as initial seeds, resulting in an even 

higher quality clustering solution by enabling the original seeds to change as necessary. The results 

show that the approach outperforms five contemporary techniques on twenty natural data sets 

included in this study, according to six evaluation criteria. Roy and Sharma (11) described a 

clustering technique based on the Genetic K-means paradigm that works well with data that 

contains both numerical and categorical variables. This study proposed a modified cluster center 

description to overcome the genetic K-means algorithm's numeric data constraint and give a more 

complete definition of clusters. The performance of this method was investigated using benchmark 

data sets. Han and Xiao (12) explain the fundamental premise of the genetic algorithm, which is 

based on Darwin's theory of evolution's "survival of the fittest", describes the algorithm's primary 

characteristics, and analyzes its weaknesses. An enhanced adaptive genetic algorithm is developed 

based on the specific running phases of the genetic algorithm, to address its inadequacies. Finally, 

an example is provided for simulation. The simulation results demonstrated that the enhanced 

method has some advantages. In the current paper, we use the genetic algorithm with the negative 

equation of the gap statistic as the objective function to find the optimal number of clusters. 

 

2.  Materials and Methods 

     This section will present the types of clusters and algorithms used for them, as well as the 

algorithms used in this paper. 

2.1. Clustering types  

A clustering approach seeks to group comparable data items and allocate heterogeneous data to 

various clusters using an objective function, model, grid computing, or density computing. As a 

result, hundreds of articles include numerous clustering techniques. These approaches are divided 

into five types: partitioning, density-based, hierarchical, and grid-based methods. Each strategy 

has advantages and disadvantages (13). 

1. Hierarchical clustering:  It is a cluster analysis technique that aims to create a hierarchical 

cluster structure. A hierarchical clustering technique may be defined as a collection of standard 

(flat) clustering algorithms grouped in a tree form as the shape in Figure 1. which provides a 

dendrogram for visual interpretation. These techniques create clusters by recursively splitting 

the items in either top-down or bottom-up mode, so the number of clusters does not need to be 

provided beforehand. The advantage of this type is capturing clusters at different scales. 

However, large datasets are computationally costly, making it difficult to find the right number 

of clusters from the dendrogram; they cannot provide the (k) beforehand and are not suitable 

for huge datasets (14). 

     
 

     Figure 1. Hierarchical clustering (15) 
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2. Density-based cluster: It appears in geographical applications, such as clusters of points related 

to rivers, highways, electricity lines, or any linked form in image segmentation (16). The main 

advantage of density-based clustering is that the number of clusters is not required, and clusters 

of any shape may be discovered. Many density-based clustering methods have been developed. 

The most common is Density-Based Spatial Clustering of Applications with Noise (DBSCAN) 

(17). This type is robust to noise and outliers; it identifies randomly formed clusters, and there 

is no need for a certain number of clusters to be specified. However, it is sensitive to the density 

parameter settings and unsuitable for clusters with varying densities. An example of density-

based clusters is shown in Figure 2. 

 
     Figure 2. Density-based clusters (source (18)) 

 

3. Gaussian Mixture Models (GMM): This strong nonlinear model accurately fits varied data 

distributions and may successfully develop solutions of higher quality based on the 

distributions. Figure 3. shows the Expectation-Maximization (EM) algorithm with Gaussian 

Mixture Models (19). The Gaussian can model complex cluster shapes and provide probabilistic 

cluster assignments. However, it is sensitive to initialization values, it is possible to converge 

to local optimum values, and it is more computationally expensive than K-means. 

 
     Figure 3. Gaussian Mixture Models 
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4. Fuzzy clustering: It is an important type of clustering where items or objects can belong to 

many clusters with varying degrees of membership. Instead of hard assignments, where each 

data point belongs to only one cluster, as shown in Figure 4. fuzzy clustering assigns 

membership values to data points indicating the degree to which they belong to each cluster. 

The Fuzzy C-Means (FCM) algorithm allows for soft clustering where data points can belong 

to multiple clusters. It handles noise and outliers better than traditional hard clustering methods 

and provides more flexibility in capturing the uncertainty in data. Interpretation of fuzzy clusters 

can be more complex than traditional hard clusters (20). 

 

      
     Figure 4. Fuzzy clustering 

 

5. Partition clustering: As shown in Figure 5. the K-means algorithm is easy and simple to 

implement, computationally cost-effective, works well with spherical clusters, and is sensitive 

to the initial cluster centers. However, the number of clusters (k) must be set in advance, and 

it is not suitable for clusters with different sizes and densities.  

       

       Figure 5. Partition clustering 

 

2.2. Clustering Algorithms 

There are many clustering algorithms used to divide a specific dataset into a set of clusters, but the 

most important of them is the K-Means algorithm (21). 
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2.2.1. K-Means Algorithm 

The K-means algorithm is a technique of dividing N items into K clusters based on the least 

distance between the center of the cluster and the other points. K-means uses various distance 

functions to measure the similarity among the objects. The most used functions are Euclidean 

Distance and Manhattan Distance (City Block Distance). Figure 6. shows the steps of the K-Means 

algorithm. 

 
Figure 6. Flowchart of K-means (22) 

 

2.2.2. Genetic Algorithm  

Genetic algorithms are random search and optimization strategies driven by ideas of evolution and 

natural genetics. They are typically used to find solutions to optimization and search problems by 

mimicking the process of natural selection to evolve toward better solutions. Because this 

algorithm is used for optimization, it will use it to find the optimal number of clusters. Figures 7 

and 8. show the steps of this algorithm. 
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Figure 7. Genetic Algorithm (23)                                                 Figure 8. Flowchart of genetic (24) 

 

2.3. How to find the optimal number of clusters 

Finding the optimal number of clusters in a dataset is a crucial step in clustering analysis. Several 

methods can help predict the optimal number of clusters without relying solely on subjective 

judgment. Here are some common techniques used to find the correct number of clusters: 

1. Elbow Method: It provides a visual cue to determine a reasonable number of clusters (25). It 

is simple and easy to implement and can calculate the Within-Cluster Sum of Squares (WCSS) 

for a range of different numbers of clusters and look for the "elbow point" where the rate of 

decrease in WCSS slows down. However, it may not always produce a clear elbow (smooth 

elbow). 

2. Silhouette coefficient: The Silhouette Coefficient (SC) was established to quantify cluster 

density and separation (26). It is limited to the interval [-1, 1].  

It calculates the average silhouette score for a range of different numbers of clusters. The 

silhouette score indicates how similar an object is to its own cluster compared to other clusters: 

𝑠𝑖 =
𝑏𝑖−𝑎𝑖

max⁡(𝑎𝑖,𝑏𝑖)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

Negative values for a point indicate that the instance is in the wrong cluster.  

Positive numbers imply accurate and dense clustering, with larger values suggesting a bigger 

ratio of bi values to (ai) values. This means that instance i is more similar to other instances in 

its own cluster than to instances in the next closest cluster. Values around zero suggest that the 

clusters are overlapping (27). It is, computationally, more expensive than the elbow method. 

3. Gap Statistic: It compares the within-cluster dispersion for different numbers of clusters with 

what would be expected by random chance (28). The right number of clusters is where the gap 

statistic is maximized: 
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⁡⁡⁡𝐺𝑎𝑝⁡(𝑘) = log ⁡(Wk ∗) − log(𝑊𝑘)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2)                                                                                                

 Advantages:  

i. Accounts for the randomness in the data. 

ii. Helps avoid overfitting. 

 Disadvantages:  

i. Computationally intensive. 

ii. Requires generating random data for comparison. 

4. Davies–Bouldin Index Method: Computes the average similarity measure between each 

cluster and its most similar one. The right number of clusters minimizes this index. It is a 

measure of the clustering quality and can be used to evaluate the clustering results. It is based 

on the average similarity between each cluster and its most similar one, and the average 

dissimilarity between cluster centers (29). 

The Davis-Bouldin Index is calculated using the following formula: 

⁡𝐷𝐵 =
1

k
⁡∑ ⁡𝑚𝑎𝑥 (

𝜎𝑖+𝜎𝑗

𝑑(𝑐𝑖,𝑐𝑗)
)

𝑘

𝑖=1
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

      Where : k is the number of clusters. 
             𝛔i is the average distance between pointsin cluster i and the centroid of cluster i. 

             𝛔j is the average dustance between points cluster j and the centriod of cluster j. 

             D(ci,cj) is the distance between the centroids of clusters i and j. 

 Advantages:  

i. Provides a measure of the clustering quality. 

ii. Encourages clusters to be well separated. 

 Disadvantages:  

i. Requires distance/similarity measure between clusters. 

ii. Not as widely used as some other methods. 

2.4. Our Proposal 

This section describes the steps to discover the appropriate number of clusters. Genetic Algorithm 

(GA) implementation for finding the ideal number of clusters (k), the individual representation is 

based on the choice of the number of clusters (k) for each member of the population. Each 

individual (solution) in the population represents a potential solution, which is a possible value for 

the number of clusters. The Genetic Algorithm uses an integer encoding for the representation of 

individuals. Each gene in the chromosome represents a potential value for the number of clusters 

(k) within the specified range (k_min to k_max). The chromosome represents an individual in the 

population. Each gene in the chromosome represents a potential value for the number of clusters 

(k). The range of possible values for each gene is between k_min and k_max.  The encoding is 

based on an integer representation where each gene corresponds to a specific value for k. The 

population is initialized with random integers within the range 1 to Len (gaps), representing 

potential values for k. Each individual's fitness is evaluated based on the gap statistic values. 

Individuals with better fitness values are selected for the next generation. During the crossover 

stage, selected individuals are combined to produce offspring with a mix of genes from the selected 

parents. Then, the mutation randomly changes some genes in the offspring to introduce diversity 

in the population. In the Gap Statistic strategy for determining the optimal number of clusters in a 
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dataset, generating appropriate reference data is crucial for comparing the within-cluster dispersion 

of the original data by using Uniform Distribution, which is the points that are randomly distributed 

within the same range as the original data, ensuring that reference data. The Gap Statistic is 

calculated as the difference between the log of the within-cluster dispersion for the original data 

and the expected log dispersion for the reference data. Let's denote the within-cluster dispersion 

for K clusters in the original data as (Wk), and the expected within-cluster dispersion for K clusters 

in the reference data as (Wk∗).  

The fitness function is: max (Gap (K)= - (log(wk*)-log(wk) )) 

The Gap statistic is a measure used to compare the within-cluster dispersion of a given dataset 

with that of reference datasets. The Gap statistic formula takes the difference between the 

logarithm of the within-cluster dispersion of the reference datasets and the logarithm of the within-

cluster dispersion of the original dataset. If the average within-cluster dispersion of the reference 

datasets is greater than the within-cluster dispersion of the original dataset, the gap statistic will be 

negative. So, by using the gap statistic equation in the genetic algorithm's objective function, we 

can find the optimal number of clusters for standard and synthetic datasets. The steps of the Genetic 

Algorithm are executed, and upon reaching the objective function, Algorithm 1 is executed to find 

the max value of the objective function, which is considered the optimal number of clusters. 

                                                                                                                               

Algorithm1: Steps to find the result of objective function 

Input: Original Data  

Output: best number of cluster 

Set Initial Parameters: 

          Define the maximum number of clusters (K_max) 

          Choose the range of K values to evaluate (from 2 to K_max) 

Initialize K = 2  

K_max = 10 

Loop:  

        Fit K-Means: Apply K-means clustering to the data for K clusters 

        Calculate Within-Cluster Dispersion (Wk): Compute the within-cluster dispersion for K cluster 

        Generate Reference Data:  

                 Create reference data using a uniform distribution 

                 Fit K-means on the reference data for K cluster 

                 Calculate expected within-cluster dispersion (Wk*) 

Compute Gap Statistic:  

      Calculate Gap Statistic: Gap(K) = log(Wk*) - log(Wk) 

Increment K 

Check Termination Criteria:  

If K reaches K_max, exit loop 

End of Loop 

Select Optimal K: Analyze Gap Statistic values then multiply the result with negative 1 to determine the 

optimal number of clusters 

Calculate the standard error 

 End 

 

3.  Results and Discussion 

     In the beginning, we show the results of four standard datasets (the Iris dataset, the Wine 

dataset, the Digits dataset, and the Breast cancer dataset) by applying the genetic algorithm on 
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them and finding the optimal number of each dataset by utilizing the Gap statistic using Python 

code on Colab Google.  

3.1. Experimental results  

A Genetic Algorithm was implemented on standard and synthetic datasets to find the optimal number 

of clusters and show the results of four examples of standard datasets below. 

Example 1. 

This method is applied to the iris dataset. The dataset is commonly used for classification tasks, 

clustering algorithms, and data visualization techniques. It contains 150 instances, with 50 

instances for each class. The dataset contains measurements of four features of three species of iris 

flowers (30). Figure 9. shows the plot of sepal width and length in the iris dataset. 

                  

Figure 9. Plot of sepal width and length of iris dataset 

 

 
Figure 10. Distribution of iris dataset   
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Figure 11. Gap statistic of iris dataset 

Figure 10. shows the distribution of the iris dataset, and Figure 11. shows the plot of the gap 

statistic of the iris dataset. The ideal number of clusters is 3, which is determined by using the 

genetic algorithm, as shown in Tables 1 and 2. 

Example 2. 

The Wine Quality dataset is a classic dataset used for classification tasks. While it is primarily 

designed for classification rather than clustering, it is available from the UCI Machine Learning 

Repository and includes data for both red and white wines. The goal of the dataset is to model 

wine quality based on physicochemical tests. It contains 4,898 instances and 11 features: 

(1-fixed acidity, 2 - volatile acidity, 3 - citric acid, 4 - residual sugar, 5 – chlorides, 6 - free sulfur 

dioxide, 7 - total sulfur dioxide 8 - density 9 - pH 10 - sulphates 11 – alcohol). Figure 12 shows 

the distribution of the wine dataset before finding the optimal number of clusters. 

 
Figure 12. Distribution of wine dataset before finding the optimal number of clusters 
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Figure 13. Distribution of wine dataset after finding the optimal number of clusters 

 

Figure 13. shows the distribution of the wine dataset after finding the optimal number of clusters, 

and Figure 14. shows the plot of the gap statistic of the wine dataset. The optimal number of 

clusters of the wine dataset is 2, as shown in Tables 1 and 5. 

 

 
Figure 14. Gap statistic of wine dataset 

 

Example 3. 

The digits dataset is a commonly used dataset in machine learning for practicing classification 

algorithms. It consists of 8x8 pixel images of handwritten digits (0-9). Each sample in the dataset 

represents an image of a handwritten digit. Each pixel value is an integer ranging from 0 to 16, 

representing grayscale values. The dataset has a total of 1797 samples (31). Figure 15. shows the 

plot of the gap statistic of the Digits dataset. 
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Figure 15. Gap statistic of Digits dataset 

 

The optimal number of clusters of the digits dataset is 10, as shown in Table 1. 

 

Example 4. 

The Breast Cancer dataset is a common dataset used in machine learning for classification tasks, 

particularly in the context of predicting whether a tumor is benign or malignant based on features 

derived from images of cell nuclei. The dataset has features extracted from digital images of breast 

masses that describe the properties of cell nuclei found in the image. Each sample in the dataset 

represents information related to a specific breast mass. It contains 7,909 breast cancer images. 

The main job for this dataset is binary classification, where the objective is to guess from the given 

information whether a tumor is harmless or harmful (32). Figure 16. shows the distribution of the 

breast cancer dataset after clustering into two sets, as in Figure 17. That means the optimal number 

of clusters is 2, as shown in Table 1. 

 

 
Figure 16. Distribution of Breast Cancer dataset 
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Figure 17. Gap statistic of Breast Cancer dataset 

 

Table 1. will present the results. Determine the optimal number of clusters for four datasets within 

a specified cluster range. Other methods show the optimal number of clusters in Tables 2, 3, 4, 

and 5. So the comparison is clear. Table 6. illustrates the comparison clearly. 

 

Table 1. Results of (2 to 10) range to find the optimal number of clusters for the four datasets 
 2 3 4 5 6 7 8 9 10 

Iris dataset 1.727 1.773 1.424 1.276 1.292 1.422 1.275 1.121 1.230 

Wine dataset 2.255 2.029 2.027 1.999 2.000 1.989 1.969 1.933 1.917 

Digits dataset -2.405 -2.327 -2.268 -2.224 -2.193 -2.150 -2.119 -2.093 -2.059 

Breast cancer dataset 2.119 2.014 1.943 1.970 1.907 1.838 1.759 1.738 1.702 

 

Table 2. Finding the optimal number of clusters by using silhouette and Davies-Bouldin on the iris dataset 

 2 3 4 5 6 7 8 9 10 

Silhouette score 0.581 0.479 0.385 0.345 0.333 0.266 0.341 0.324 0.335 

Davies – bouldin 0.593 0.789 0.869 0.943 0.993 1.124 0.990 0.977 0.975 

 

Table 3. Finding the optimal number of clusters by using silhouette and Davies-Bouldin on the Breast cancer dataset 

 2 3 4 5 6 7 8 9 10 

Silhouette score 0.344 0.315 0.274 0.164 0.145 0.146 0.161 0.143 0.147 

Davies - bouldin 1.309 1.539 1.492 1.429 1.503 1.499 1.555 1.502 1.511 

 

Table 4. Finding the optimal number of clusters by using silhouette and Davies-Bouldin on the Digits dataset 

 2 3 4 5 6 7 8 9 10 

Silhouette score 0.386 0.104 0.106 0.102 0.104 0.111 0.127 0.130 0.135 

Davies - bouldin 1.562 2.292 2.406 2.252 2.232 2.117 2.055 1.893 1.806 

 

Table 5. Finding the optimal number of clusters by using silhouette and Davies-Bouldin on the wine dataset 

Results 2 3 4 5 6 7 8 9 10 

Silhouette score 0.265 0.284 0.254 0.183 0.168 0.172 0.162 0.173 0.139 

Davies - bouldin 1.494 1.389 1.695 1.912 1.930 1.701 1.843 1.643 1.719 
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Table 6. The optimal number of clusters for four datasets by using the three ways 

 Genetic algorithm Silhouette score Davies-bouldin 

Iris dataset 3 2 2 

Wine dataset 2 3 3 

Breast cancer dataset 2 2 2 

Digits dataset 10 2 2 

 

Table 7. Four datasets and the values of the standard error for each optimal number of clusters 

 Optimal number Standard error 

Iris dataset 3 0.711 

Wine dataset 2 0.234 

Breast cancer dataset 2 0.224 

Digits dataset 10 0.0362 

 

Table 7. shows the results of the optimal number of clusters for the four datasets and the 

standard error of each one of them. 

3.2. Discussion 

When using the silhouette score to find the optimal number of clusters, first apply the K-means 

algorithm to divide the dataset into the range of clusters. For example, when using the silhouette 

score to find the optimal number of clusters on a specific dataset, after the data was divided into 2 

to 10 clusters, the biggest result (close to 1) represents the optimal number of clusters. When 

applied to multiple datasets, the results were correct, as with the breast cancer dataset. Table 3 

displays the results. Similarly, for the Davies Bouldin index, a smaller value indicates a more 

optimal clustering solution (approaching 0). This index is used to find the optimal number of 

clusters but does not give the right results in all tested datasets, as applied to the iris dataset as 

shown in Table 2. the minimum number is 2 clusters, but the right number is 3 clusters. So, a 

genetic algorithm was needed to find the best number of clusters across all datasets that were 

tested, compare these approaches, and find the right answers, as shown in Table 6. The right 

number of clusters of the iris dataset is 3, the best number of the wine quality dataset is 2, and the 

breast cancer dataset has 10 clusters of digits. 

 

4. Conclusion 

     In clustering analysis, many procedures necessitate the designer to supply the number of 

clusters. The cluster algorithms may not have the ability to locate the appropriate number of 

clusters in advance. This paper suggests a new goal function for the genetic algorithm (GA)-

based gap statistic clustering method based on the clustering partition. The genetic algorithm 

(GA) is an optimization technique that can present the optimal number of clusters for four 

different datasets: the Iris dataset, the Wine dataset, the Digits dataset, and the Breast Cancer 

dataset). The genetic algorithm (GA) with a new objective function found the right number of 

clusters in four datasets. 
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