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 Abstract   

     Automatic Number Plate Recognition (ANPR) technology has offered a good solution tool for 

automating toll collection system processing and contributing solutions to complications such as 

traffic congestion, environmental problems, and operational inefficiencies. The investigation 

focuses on improving and organizing an ANPR-based system to allow smooth toll charging and 

letting cars pass through toll gates without pausing. The suggested system uses a deep learning 

algorithm and developed image processing techniques to consistently detect and recognize license 

plates of vehicles in real-time, even in difficult conditions, for instance, fast motion, low lighting, 

and bad weather. The ANPR system is connected to a centralized database and an automated 

billing system, confirming secure and real-time transactions. This method removes the need for 

manual intervention, decreases wait times, and improves user convenience. In addition, the system 

is designed to be adaptable to manage large traffic volumes while preserving both accuracy and 

efficiency. Extensive experimental evaluations were conducted to validate the system’s 

performance, demonstrating high recognition accuracy, robust reliability, and minimal processing 

delays. By automating tolling operations, this solution improves the overall user experience and 

contributes to reduced vehicle emissions and energy consumption, aligning with sustainable 

transportation goals. The findings of this research underscore the potential of ANPR technology 

to revolutionize tolling systems and provide a blueprint for its large-scale deployment in smart 

transportation networks worldwide. 
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1. Introduction 

     Highways have historically been a significant part of virtually all countries' transportation 

infrastructure. Tolls are collected through manual systems and are based on a cash economy. Road 

classic systems in the form of toll collection barriers are primarily used at motorway entrances, 

which only allow vehicles with the appropriate transponder to pass through. If a toll violation is 
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detected manually, the fee and penalty are invoiced to the vehicle's owner, usually on the spot (1, 

2). The traditional toll collection methods are cash or token-based collection or Radio Frequency 

Identification (RFID) card-based collection. Still, both have drawbacks, such as traffic congestion 

at toll plazas and high capital expenditure. The cash and token-based collections are manual, 

requiring human labor, and hence are prone to human error (3-6). Due to rapid technological 

development, mostly occurring in computer vision, communication, and sensor-based systems, it 

is now possible for any vehicle to be charged through a fully automatic system. Many of the larger 

countries have experimented with optical-based systems in recent years. These systems were also 

called all-time zero barriers systems, where no drivers had to stop and were charged based on 

license plates or transponders. Implementing a toll collection system aims to expedite vehicle flow, 

reduce pollution, and increase security. Considerable benefits can be foreseen by rendering this 

system fully automatic to control vehicles and charge almost silently (7-10). Despite featuring the 

best availability of microelectronics, remote sensing technology, and robust software systems, toll 

collection systems still suffer from several issues that directly impact their effectiveness and 

efficiency. Each method for identifying a vehicle arriving at a toll point has limitations. The optical 

devices sometimes fail to identify and recognize the enrolled vehicles due to light reflections and 

some specially painted vehicles (11). Some Electronic Toll Collection (ETC) technologies, such 

as touch cards, might fail to respond in extremely hot and cold conditions. Additionally, electronic 

devices used to keep the touch cards or RFID tags placed mainly in or near windscreens for 

recognition are not attached correctly in some vehicles. As a result, this might lead to vehicles 

remaining unidentified. Due to these and other reasons, some vehicles using toll facilities might 

have evaded their toll obligations until now (12-17). To address these issues and to have a more 

acceptable, suitably identified technology, we resort to Automatic Number Plate Recognition 

(ANPR), as it is more compact for the unique identification of vehicles. With a guarantee that the 

ANPR design is used, every country chooses a distinct font permitted for number plate 

distribution. These projects are implemented everywhere around innovative urban environments 

and are considered intelligent transportation systems managed in cities, some of which are called 

'smart cities.' Intelligent transportation systems are designed for different transportation systems 

in a city that use the city's wireless network to continually accelerate and manage the city's 

transportation (18). ANPR used in smart cities can control several aspects, including public 

transportation and traffic volume, and it also controls and monitors parking. The ANPR system 

creates a data file for those license plates, either allowed or not, to avoid fines for non-payers and 

designate locations, especially in public places (19-22). The primary objective of this research is 

to design and develop an efficient Automatic Number Plate Recognition (ANPR) system for 

seamless toll charging, enabling vehicles to pass through toll gates without stopping. The study 

aims to address key challenges such as accurate number plate detection under diverse 

environmental and traffic conditions, real-time data processing, and automated billing integration. 

By focusing on these aspects, the research seeks to eliminate manual intervention, reduce traffic 

congestion, and enhance the overall efficiency of tolling systems. Moreover, the system enhances 

reliability and scalability, making it ideal for extensive deployment in contemporary transportation 

networks. This work aims to enhance smart transportation infrastructure by offering less time, 

more convenience, and environmentally friendly tolling solutions. The rest of the paper is 

structured as follows: Section 2 discusses the related work concerning automatic toll charging. 

Section 3 discusses the ANPR system and the number plate recognition process. Section 4 is 
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specifically designed to experiment and result in evaluation. Finally, section 5 gives the 

conclusions and future directions. 

1.1. Related Works 

Several uses of the Automatic Number Plate Recognition (ANPR) technology have gained 

significant consideration in recent decades due to its many traffic management, automated billing 

systems applications, and security.  The advancement of ANPR systems can be distributed into 

three main categorizes: traditional image processing-based methods, the latest deep learning 

techniques, and machine learning-enhanced techniques. Every decade has advanced license plate 

detection, accuracy, speed, and robustness.  Initial ANPR systems extensively utilized traditional 

image processing techniques such as pattern recognition, segmentation, and edge detection (23-

26). For example, Smith and Patel (2005) designed an ANPR system that utilized morphological 

operations and linked component examination to detect license plates under-regulated lighting 

conditions. Although effective in optimal settings, these systems frequently face chilling with 

changing illumination, occlusions, and designs for plates (27). The overview of machine learning 

algorithms marked a major development in ANPR technology. Researchers, for instance, Khan et 

al. (2012) integrate support vector machines (SVM) and neural networks to improve the accuracy 

of character recognition. These methods enhanced the system's capability to generalize across 

several plate formats and environmental conditions (28). Nevertheless, both the computational 

complexity and the requirement for substantial feature engineering continued to pose challenges. 

Recent decades of advancements have led to the use of deep learning techniques, especially 

convolutional neural networks (CNNs), which have developed image recognition tasks. Studies in  

(29) showed that CNN-based ANPR systems could deliver great results, higher accuracy, and 

faster processing times compared to the covenantal approach. These systems are better equipped 

and adaptable to variations in lighting plate design angles, making them appropriate for real-life 

applications. Many research applications of ANPR in toll collection systems have been widely 

explored to support automated and efficient vehicle processing. Traffic jams and higher operating 

costs are caused by human error and delays that plague traditional toll collection technology such 

as fence gates and traditional ticketing. To solve these issues, we have proposed ANPR-based 

resolves that enable smooth toll payment without the requirement for vehicles to stop.  For 

instance, Jain et al. (2018) created an ANPR system combined with RFID technology to simplify 

toll collection. Their system displayed shorter processing times and developed vehicle 

identification accuracy (30). Despite these improvements, current ANPR-based toll systems face 

many challenges. Conservational aspects such as rain, fog, and nighttime conditions cause damage 

to image quality, affecting recognition accuracy. Moreover, high-speed traffic needs fast image 

processing and decision-making to maintain a smooth flow, necessitating highly efficient 

algorithms and a robust hardware structure. For an efficient ANPR system, the automated billing 

infrastructure should be combined efficiently. Various studies have focused on making combined 

platforms that connect vehicle identification with billing and payment systems. Furthermore, a 

cloud-based ANPR system that connects license plate data allows for automated user account 

charging and management. This method highlighted the need for secure data transfer and real-time 

synchronization to prevent billing errors (31).  

 

 

 



IHJPAS. 2025, 38 (2) 

445 
 

2.  Materials and Methods 

     The proposed ANPR addresses the limitations of existing solutions by incorporating robust 

methodologies and advanced technologies into a toll collection system. Even in adverse 

environmental conditions, the system offers real-time processing, seamless integration with 

automated billing systems, and recognition accuracy. As shown in Figure 1. the system consists 

of the following phases: 

 

 

 

Figure 1. ANPR system development phases. 

 

2.1. Image Acquisition Unit  

Supply precise imaging for different lighting conditions, such as night and day. In this unit, the 

speed cameras are equipped with possibly infrared capabilities and wide-angle lenses. To obtain 

high visibility of license plates and low obstruction, cameras should be put in unique positions, 

such as angled or overhead. To avoid motion blur and capture the details of vehicle plates from a 

distance, the cameras should have a high frame rate and a high resolution above 4K, respectively. 

This will help with accurate plate recognition. 

2.2. Pre-processing Phase 

This phase converts a captured image (I) to a grayscale. For environmental conditions such as 

glare, poor lighting, or fog, the system improves the quality of images by increasing visual clarity 

and decreasing noise. Figure 2. illustrates all the functions performed during the preprocessing 

phase. 
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Figure 2. Illustration of the pre-processing steps applied to a car image 

 

2.2.1. Grayscale Conversion 

Grayscale conversion transforms a color image into a single-channel image, where each pixel 

intensity represents brightness. This process simplifies image data, making processing easier in 

noise reduction or feature extraction tasks. The equation for converting an RGB image (I) to 

grayscale is shown in Equation (1): 

𝐼𝐺𝑅𝐴𝑌 = (0.2989×R)+ (0.5870×G) + (0.1140×B)                                                                   (1) 

The parameter (R) is the red channel intensity, with a weight of 0.2989, reflecting its contribution 

to the perceived brightness. Similarly, (G) denotes the green channel intensity, assigned the highest 

weight of 0.5870, as the human eye is most sensitive to green light. Finally, (B) represents the blue 

channel intensity, with the most negligible weight of 0.1140, given that human vision is least 

sensitive to blue light. Together, these weights ensure that the grayscale image captures brightness 

information aligned with human perception. 

2.2.2. Noise Reduction 
Then, the Gaussian filter applies a weighted average to each pixel in IGRAY, where the Gaussian 

function defines the weights (32). This minimizes noise without significantly distorting important 

image features like edges (see Equation (2)). This step is crucial for robust license plate detection 

in noisy or low-quality images. 

𝐼𝑆𝑀𝑂𝑂𝑇𝐻 =  
1

2𝜋𝜎2
 𝐸𝑋𝑃 (−

𝑥2 + 𝑦2

2𝜎2
) × 𝐼𝐺𝑅𝐴𝑌                                                                                      (2) 

 

Where (IGRAY) is the grayscale version of the original image used as input for smoothing. The σ is 

a standard deviation of the Gaussian distribution; controlling the extent of blurring larger σ values 

result in more smoothing. The x and y are spatial coordinates relative to the Gaussian kernel's 

center, determining a pixel's distance and influence on the smoothing.  

2.2.3. Adaptive Histogram Equalization 
Adaptive Histogram Equalization (AHE) enhances image contrast and brightness, particularly in 

poorly lit conditions, by redistributing pixel intensity values (33). This ensures that the details of 
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an image, such as license plate characters, become more distinguishable. A commonly used 

variation is CLAHE (Contrast Limited Adaptive Histogram Equalization), which prevents noise 

over-amplification and avoids excessively high contrast in homogeneous regions. Equation (3) 

describes the function of adaptive histogram equalization. 

 

𝐼𝑂𝑈𝑇(𝑥, 𝑦)
𝐼𝐼𝑁(𝑥, 𝑦) − min(𝐿𝑅)

max (𝐿𝑅) − min (𝐿𝑅)
 × (𝐿𝑀𝐴𝑋 − 𝐿𝑀𝐼𝑁) + 𝐿𝑀𝐼𝑁                                                             (3) 

 
Where 𝐼𝐼𝑁(𝑥, 𝑦) represents the input pixel intensity at coordinates (x, y) in the original image. LR 

is the local histogram range for the neighborhood window around (x, y), with its size determining 

the algorithm's adaptability. The 𝑚𝑖𝑛 (𝐿𝑅) and max (LR) are the minimum and maximum pixel 

intensities within this region, while LMAX and LMIN represent the global intensity range, typically 0 

to 255 for 8-bit images. 

2.2.4. Contrast Adjustments 
Contrast adjustment is a crucial image processing step that enhances the visual distinction between 

objects of interest (e.g., license plate characters) and the background. Increasing the intensity 

difference between the foreground and background makes the license plate characters more 

prominent and more accessible to detect. The developed system utilizes a linear contrast stretching 

method for contrast adjustment. The adjusted pixel intensity at coordinates (x, y) after contrast 

adjustment is calculated in Equation (4).   

𝐼𝐴𝐷𝐽(𝑥, 𝑦)
𝐼𝐼𝑁(𝑥, 𝑦) − 𝐿𝑀𝐼𝑁

𝐿𝑀𝐴𝑋 − 𝐿𝑀𝐼𝑁
 × (𝑁𝑀𝐴𝑋 − 𝑁𝑀𝐼𝑁) + 𝑁𝑀𝐼𝑁                                                                       (4) 

 

Where 𝐼𝐼𝑁(𝑥, 𝑦) presents the original pixel intensity at (x, y) in the input image. 𝐿𝑀𝐼𝑁 and 𝐿𝑀𝐴𝑋 

are the minimum and maximum intensity values in the input image, defining its dynamic range. 

𝑁𝑀𝐼𝑁 and 𝑁𝑀𝐴𝑋 are the desired intensity ranges in the output image, typically set to 0 and 255 for 

8-bit images to achieve total contrast adjustment. 

2.2.5. Edge Enhancement for License Plate Detection 

Edge enhancement techniques highlight boundaries and transitions in intensity within an image, 

making features like the edges of a license plate more distinct. These methods improve the 

accuracy of detection algorithms by emphasizing the structural details critical for recognition (34). 

A widely used technique for edge enhancement is the Sobel filter, which computes the image 

intensity gradient in two perpendicular directions (horizontal and vertical). The process applies 

convolution for IGRAY with the Sobel kernels (Gx and Gy) to compute the gradients in the horizontal 

and vertical directions. Next, calculate the gradient magnitude (G) to highlight edges.  

2.3. License Plate Detection Using YOLOv8 

The proposed system utilizes the YOLOv8 (You Only Look Once version 8) deep learning model 

to detect the region of interest (ROI) containing the license plate. YOLOv8 can detect objects in 

real-time, making it suitable for vehicle license plate recognition applications (35). It divides the 

image into a grid, predicting bounding boxes with confidence scores and class probabilities for 

each grid cell. YOLOv8 calculates each predicted box's coordinates, width, height, and confidence 

score. After predictions, Non-Maximum Suppression (NMS) filters out redundant boxes based on 

confidence and overlap. The bounding box with the highest score is selected as the detected license 

plate. This process enables rapid and accurate license plate detection in real-time applications. 

Figure 3. effectively visualizes the end-to-end process of YOLOv8. 
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Figure 3. Workflow of YOLOv8 object detection process 

 

2.4. Character Recognition Phase 

Optical Character Recognition (OCR) is used to interpret and extract text from images, such as 

reading the characters on a vehicle license plate. Traditional OCR systems often struggle with 

noisy, distorted, or low-resolution images because they rely on fixed, hand-crafted features. To 

address these limitations, deep learning-based OCR models like Convolutional Recurrent Neural 

Networks (CRNNs) have gained prominence for their ability to handle complex, real-world data. 

CRNNs combine the strengths of Convolutional Neural Networks (CNNs) for feature extraction 

and Recurrent Neural Networks (RNNs) for sequence prediction, making them especially effective 

in OCR tasks where the sequence of characters matters. The following essential components can 

represent CRNN: 

The first step in using a CNN is to extract spatial features from the input image. The CNN supplies 

twisted filters to the image, taking hierarchical patterns such as edges, textures, etc., to illustrate 

the characters.  

CNN can be represented as a mathematical formula: F=CNN(I)                                                  (5)                                                                                                                       

The I and F are the input images and the extracted feature map. 

The sequence of characteristics is fed into a Recurrent Neural Network (RNN) to model the time-

related dependencies between the characters, which is the output of the CNN. The RNN operates 
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this sequence gradually, predicting the characters one at a time. The F=[f1,f2,…,fT] is the feature 

sequence from the CNN, then the RNN formulated as: 

 S=RNN(F)                                                                                                                                    (6)                                                                                                                  

Equivalent to the sequence of characters on the license plate, the S is the sequence of outputs 

predicted by the RNN. Enhancing the conventional OCR's ability to manage multiple inputs and 

complex by enabling CRNNs to decode text from images in noisy or cluttered environments 

precisely.  

2.5. Billing and Payment Phase 

After the license plate is denoted, the system identifies it with the vehicle’s list in the database, 

ensuring its registration for tolls. The account balance is checked, and suitable toll fees based on 

the route or area are calculated. Credit/debit cards, mobile payments, or more advanced options 

are used in the system. 

 

3. Results and Discussion 

     The TensorFlow/Keras deep learning framework and Python are used to implement the model. 

The training and development were executed in an environment with an NVIDIA GPU, such as 

the RTX 3080, to ensure accelerated inference and training. This research assesses the output of 

Optical Character Recognition (OCR) systems and deep learning-based OCR models, especially 

Convolutional Recurrent Neural Networks (CRNNs) for license plate identification. The 

evaluations were executed on a dataset with 150 images extracted from three videos, taken at 

various times with different angles, motion conditions, and lighting. This dataset supplies a 

challenging benchmark and is realistic for examining OCR output. The dataset was divided into 

(70%, 105 images) and (30%, 45 images) for training and testing. To execute the output of OCR 

and the CRNN model in identifying license plates under real-world conditions, the training set is 

used to train the CRNN model, while the test set serves as the benchmark. This partition applies 

enough data for training and maintaining a robust execution protocol. 

Conventional OCR systems, which rely on fixed, hand-crafted output, have high limitations when 

executing in dynamic conditions, and diversity is represented in the dataset. These system's goals 

have 67.2% accuracy in the test set, with output decreasing in challenging scenarios like extreme 

plate angles and motion blur. However, the CRNN model, trained on the 105 images from the 

training set, achieves 91.4% accuracy in the test set to show the ability to adapt to difficult 

conditions. The model’s end-to-end learning structure and ability to obtain hierarchical and 

contextual attributes permitted it to learn conventional OCR consistently. The outcomes confirm 

the advantage of deep learning-based approaches, especially CRNNs, in real-world license plate 

recognition. The dataset's various conditions, caught from three videos at different times and 

locations, focus on the actual quality of CRNN models in treating noise, deformation, and other 

affronts where conventional OCR procedures falter, as shown in Table 1. 

3.1. Accuracy Comparison 

To assess the advanced system's efficiency and robustness, we tested its accuracy under lighting 

differences, motion blur and deformation, and plate direction with obstructions. The study 

converges on the system's capacity to confirm and maintain high output under these scenarios, as 

shown in Table 1. 
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A. Analysis of Accuracy in Lighting Variations 

Lighting circumstances can greatly affect the features of captured images, which is essential to 

license plate recognition challenges. The dataset comprises images captured at various times of 

the day and conducted in different lighting statuses. Conventional OCR held in minimum-light 

scenarios with 59.9% accuracy, while the CRNN maintained 88.3% accuracy, highlighting its 

robustness. 

B. Evaluating Accuracy in Motion Blur and Distortions 

Images from mobile vehicles, particularly at high speeds, often hold motion blur and deformations. 

Images taken away from videos usually include motion blur or deformations due to motion. 

Conventional OCR completed 57.7% accuracy in these cases, but it was extraordinarily 

misinterpreted or failed to detect characters. CRNN completed 86.8% accuracy in disparity, 

effectively recognizing patterns as the affront input. 

C. Evaluating Accuracy in Plate Orientations and Obstruction Scenario 

Actual-world scenarios often contain plates captured at non-frontal angles or slightly blocked 

vision consequent to filth, objects, or other vehicles. Plates captured at maximum angles or slightly 

closed posed an affront for conventional OCR, completing 54.7% accuracy in similar scenarios. 

CRNN outperformed it, with 85.1% accuracy, by leveraging its consecutive modeling abilities. 

 

Table 1. Accuracy comparison of conventional OCR and CRNN in various situations. 

condition Traditional OCR Accuracy CRNN Accuracy 

Overall Accuracy 67.2% 91.4% 

Low Lighting  

Motion Blur/Distortions 

59.9% 

57.7% 

88.3% 

86.8% 

Plate Orientation  54.7% 85.1% 

 

As shown in Figure 4. these results confirm the value of leveraging precedent OCR settling for new 

license plate recognition systems, mainly in mobile environments where accuracy is critical. 

 
Figure 4.  Comparison of accuracy between conventional OCR and CRNN processes across different situations 

 

4. Conclusion  

      The evaluation and enforcement of the proposed ANPR-based toll collection system confirm 

its chances of revolting against the conventional tolling process. The system obtains reliability and 
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accuracy by deep learning and leveraging preceding image processing techniques, even in affront 

situations like lousy lighting, reverse weather, and high-speed motion. Combining a center on 

database and automated billing infrastructure includes real-time cooperation, security, boosting 

user approval, and decreasing wait times. Furthermore, the system’s efficiency and scalability in 

curing the rising traffic volumes make it appropriate for diffuse adoption. The empirical outcomes 

highlight the system’s capability to reduce handling delays and look after robust achievement, 

confirming its bias with possible transportation objectives by decreasing vehicle revival and 

energy consumption. These returns attitude ANPR technology as a transformative setting for new 

tolling systems, paving the direction for its great-scale overall deployment in intelligent 

transportation networks. Future studies should converge on the beneficial robustness of proposed 

models to withstand extreme environmental situations, such as dense rain, snow, and fog. This can 

be completed by combining data-raising techniques and training on massive, extra-varied datasets. 
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