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Abstract  
The aim of this paper, is to design multilayer Feed Forward Neural Network(FFNN)to find 
the approximate solution of the second order linear Volterraintegro-differential equations with 
boundary conditions. The designer utilized to reduce the computation of solution, 
computationally attractive, and the applications are demonstrated through illustrative 
examples. 
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Introduction 
          We consider the second order linear Volterraintegro-differential equations of the form : 

y"(x) + p(x) y'(x) + q(x) y(x) = f(x) +                                   ,      x ∈[a, b]  ,            (1) 
with boundary conditions : 
y(a) = ya     ,       y(b) = yb        ,  
where K(x, t), f(x), y(x), and p(x), q(x), are analytic functions and ya , yb are real constants. 
y(x) is the solution to be determined. Numerical methods for solution of linear 
Volterraintegro-differential equations have been studied by the authors[1 − 5]. There have 
been considerable interest in solving integro-differential equation (1). Theorems which list the 
conditions for the existence and uniqueness of solutions of such problems are contained in a 
book by Agarwal [1]. Two point boundary value problem for integro-differential equation of 
second order is discussed by J. Morchalo in [2]. Also, J. Morchalo [3] studied two point 
boundary value problem for integro-differential equation of higher order. A reliable algorithm 
for solving boundary value problems for higher-order integro-differential equation has been 
proposed by A. M-Wazwaz [4]. The aim of mentioned paper is to present an efficient 
analytical and numerical procedure for solving boundary value problems for integro-
differential equations. E. Babolian et al [5], applied operational matrices of piecewise constant 
orthogonal functions for solving Volterra integral and integro-differential equations. They 
first obtained Laplace transform of the problem and then found numerical inversion of 
Laplace transform by operational matrices. Sinc methods have increasing been recognized as 
powerful tools for attacking problems in applied physics and engineering. The book [6] 
provide excellent overviews of methods based on Sinc functions for solving ordinary and 
partial differential equations and integro-differential equations. In [7], the Sinc collocation 
procedures for the eigenvalue problems are presented. J. Rashidinia, M. Zarebnia in [8, 9], 
used Sinc methods for numerical solutions of integral equations.  
            In this paper, we design a multilayer Feed Forward Neural Network(FFNN) to 
approximate the solution of the equation (1) . 
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What are Artificial Neural Networks? [10] 
           An Artificial Neural Network (Ann) is an information processing paradigm that is 
inspired by the way biological nervous systems, such as the brain, process information. The 
key element of this paradigm is the novel structure of the information processing system. It is 
composed of a large number of highly interconnected processing elements (neurons ) working 
in unison to solve specific problems. Ann's, like people, learn by example. An Ann is 
configured for a specific application, such as pattern recognition or data classification, 
through a learning process. Learning in biological systems involves adjustments to the 
synaptic connections that exist between the neurons. This is true of Ann's as well. That is 
Artificial Neural Networks are relatively crude electronic models based on the neural 
structure of the brain. The brain basically learns from experience. It is natural proof that some 
problems that are beyond the scope of current computers are indeed solvable by small energy 
efficient packages. This brain modeling also promises a less technical way to develop 
machine solutions. This new approach to computing also provides a more graceful 
degra dat ion  during system over loa d tha n i t s more t radit iona l counterpar t s .  
These biologically inspired methods of computing are thought to be the next major 
advancement in the computing industry. Even simple animal brains are capable of functions 
that are currently impossible for computers. Computers do rote things well, like keeping 
ledgers or performing complex math. But computers have trouble recognizing even simple 
patterns much less generalizing those patterns of the past into actions of the future.  
 
Multilayer Feed Forward Neural Network [11] 
            In a layeredneural network the neurons are organized in the form of layers. We have at 
least two layers: an input and an output layer. The layers between the input and the output 
layer (if any) are called hidden layers, whose computation nodes are correspondingly called 
hidden neurons or hidden units. The source nodes in the input layer of the network supply 
respective elements of the activation pattern (input vector), which constitute the input signals 
applied to the neurons (computation nodes) in the second layer (i.e., the first hidden layer). 
The output signals of the second layer are used as inputs to the third layer, and so on for the 
rest of the network. A layer of nodes projects onto the next layer of neurons (computation 
nodes), but not vice versa. In other words, this network is strictly a feed forward or acyclic 
type. The neurons in each layer of the network have as their inputs the output signals of the 
preceding layer only. The set of output signals of the neurons in the output (final) layer of the 
network constitutes the overall response of the network to the activation pattern supplied by 
the source nodes in the input (first) layer.  
           The function of hidden neurons is to intervene between the external input and the 
network output in some useful manner. By adding one or more hidden layers, the network is 
enabled to extract high-order statistics. In a rather loose sense the network acquires a global 
perspective despite its local connectivity due the extra synaptic connections and the extra 
dimension of neural interactions. The Ann is said to be fully connected in the sense that every 
node in each layer of the network is connected to every other node in the adjacent forward 
layer ( otherwise the network is called partially connected   
 
Description of the Method 
In this section we will illustrate how our approach can be used to find the approximate 
solution of the equation(1), let y(x)denotes the solution to be computed,                yt(x, p) 
denotes a trial solution with adjustable parameters p , and ya(x) denotes analytic solution . 
In the our proposed approach, the trial solution yt employs a FFNN and the parameters p 
correspond to the weights and biases of the neural architecture. We choose a form for the trial 
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function yt(x) such that it satisfies the BC’s. This is achieved by writing it as a sum of two 
terms :yt(xi, p) = A(x ) + F(x, N(x, p) )                       (2) 
where N(x, p) is a single-output FFNN with parameters p and one input unit fed with the input 
vector x .The term A(x) contains no adjustable parameters and satisfies the boundary 
conditions. The second term F is constructed so as not to contribute to the BC’s, since yt(x) 
satisfy them. This term can be formed by using a FFNN whose weights and biases are to be 
adjusted in order to deal with the minimization problem . 
 
 Computation of the Gradient 
   An efficient minimization of (2) can be considered as a procedure of training the FFNN, 
where the error corresponding to each input vector xi is the value E (xi) which has to forced 
near zero. Computation of this error value involves not only the FFNN output but also the 
derivatives of the output with respect to any of its inputs. Therefore, in computing the 
gradient of the error with respect to the network weights. Consider a multi layer FFNN with 
one input unit, one hidden layer with H sigmoid units and a linear output unit . 
For a given input vector X =( x1, x2, …, xn ) the output of the FFNN is : 

N =
H

i i
i 1

(z )
=

ν σ∑ ,  where  zi=
n

ij j i
j 1

w x b
=

+∑                (3) 

wij denotes the weight connecting the input unit j to the hidden unit i, 
vi denotes the weight connecting the hidden unit i to the out put unit, 
bi denotes the bias of hidden unit i, and  
σ (z) is the sigmoid transfer function ( logsig ) . 
The gradient of FFNN, with respect to the parameters of the FFNN can be easily obtained as : 
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Once the derivative of the error with respect to the network parameters has been defined, then 
it is a straight forward to employ any minimization technique and we will use CG method. It 
must also be noted, the batch mode of weight updates may be employed . 
Conjugate Gradient Algorithms [12] 
All conjugate-gradient (CG) algorithms start bysearching in the steepest descent direction 
(negative of the gradient) for the first iteration, we set ρ0 =−g0  where g0 is the gradient of the 
error with respect to the weights, bias on the first iteration. A line search is then performed to 
determine the optimal distance to move along the current search direction : wk+1=wk + αk ρk . 
Then the next search direction is determined so that it is conjugate to previous search 
directions. The general procedure for determining the new search direction is to combine the 
new steepest descent direction with the previous search direction: 
ρk=−gk+ βkρk−1 
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The various versions of conjugate gradient are distinguished by the manner in which the 
constantβk is computed. In this paper ,we use βk for the Polak-Ribiere update, the constantβk 

is computed from : βPR=
1k

T
1k

k
T

1k

gg
gg

−−

−∆
 

Illustration of the Method 
To illustrate the method, we will consider the equation (1) ,where x ∈ [0, 1] and the BC y(0) 
= A and y(1) = B . A trial solution can be written as : 
yt(x) = A( 1− x ) + B x + x( 1− x ) N(x, p)                          (7) 
where N(x, p) is the output of FFNN with one input unit for x and weights p . 
Note that yt(x) satisfies the BC by construction. The error quantity to be minimizedis given 
by :  E[p]=    ∑i( ya(xi ) – yt(xi ) )2                                   (8) 
where the xi’s are points in [0, 1]. It is straightforward to compute the gradient of the error 
with respect to the parameters p using (4) – (6). The same holds for all subsequent model 
problems. 
Numerical examples 
In this section we report some numerical result and the solution of two model problems. In all 
cases we used a multi layer FFNN having one hidden layer with 5 hidden units (neurons) and 
one linear output unit. The sigmoid activation of each hidden unit is logsig that is :σ(x) 

= x

1
1 e−+

 

For each test problem the analytic solution ya(x) was known in advance. Therefore we test the 
accuracy of the obtained solutions by computing the deviation : 
∆y(x) = | yt(x) – ya(x) | . 
       In order to illustrate the characteristics of the solutions provided by the neural network 
method, we provide figures displaying the mean square error of FFNN for the train 
,validation, test ,best and goal at the few points (training points) that were used for training 
and at many other points (test points) of the domain of each equation. To perform the error 
minimization we use CG method with best search direction,βPR . 
Example 1 
          We consider the Volterraintegro-differential equation : 
 
y" −       y'  + y = f(x) +                                       ,  y(0) = 0  , y(1) = 0 ,  
 
with exact solution ya(x) = x(1 − x2) .  
Where K(x, t) = et                   , f(x) = − x3− x( 2 + ex          sin(x − Π/4 ) ) −     ( x cosx− sinx ). 
According to (7) the trial neural form of the solution is taken to be: yt(x) =x(1-x ) N(x, p) 
  The FFNN trained using a grid of ten equidistant points in [0, 1]. Figure(2) displays the 
mean square error of FFNN for the train ,validation, test ,best and goal at the grid points in 
1745 epoch and in figure (3) displays the performance of FFNN at many other points in [0, 1]. 
It is clear that the solution is of high accuracy, although training was performed using a small 
number of points. Moreover, the extrapolation error remains low for points near the equation 
domain. The numerical results of FFNN with search direction, βPR, introduced in table (1) . 
           This example solved in [13] using sinc collocation method for different number of sinc 
grid points N and give  the maximum of absolute errors , that is , ║ Es║ = 5.92003 × 10-3 ,its 
clear that the results of FFNN is more accurate than given in [13] .  
Example 2 

 Consider the following Volterraintegro-differential equation with the exact 
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Solution :ya(x) = ex 
 
y" − (1/ (1 − x)) = f(x) +                                       ,  y(0) = 1 , y(1) = e 
 
where 
f(x) = ex{1 − (1/(1 − x)) } − {7(−2 + 2ex + x2) cosx}/ 16(e + x) 
 
K(x, t) = 7/8 {(et + t)/(x + e) }cosx . 
According to (7) the trial neural form of the solution is taken to be: yt(x) =(1 − x) + e x + x(1 
− x)N(x, p) . 
Again, as before, we use a grid of ten equidistant points in [0, 1]. Figure(4) displays the mean 
square error of FFNN for the train ,validation, test ,best and goal at the grid points in 1390 
epoch and in figure (5) displays the performance of FFNN at many other points in [0, 1]. It is 
clear that the solution is of high accuracy, although training was performed using a small 
number of points. Moreover, the extrapolation error remains low for points near the equation 
domain. The numerical results of FFNN with search direction, βPR, introduced in table (2) . 
          This example solved in [13] using sinc collocation method for different number of sinc 
grid points N and give  the maximum of absolute errors , that is, ║ Es║ = 2.91837 × 10-3 , its 
clear that the results of FFNN is more accurate than given in [13] .  
Conclusion 
          The Feed Forward Neural Network is used to solve the second order linear 
Volterraintegro-differential equations with boundary conditions. The numerical examples 
show that the accuracy improve with increasing the number of epoch when we train the 
network and the results of testing network is more accurate than training network . 
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Table (1): The numerical results of FFNN with search direction,βPR for example (1) 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Table (2): The numerical results of FFNN with search direction,βPR for example (2) 

Input Exact Solution Output of FFNNyt(x) when we use CG 
with Deviation∆y(x) =|yt(x) −ya(x)|,  

x ya(x) βPR βPR 

1.0 2.718281828459046 2.718281828459017 0.000000000000029 
0.0 1.000000000000000 1.000000000000000 0.000000000000000 
0.1 1.105170918075648 1.105170917035035 0.000000001040613 
0.2 1.221402758160170 1.221402758150140 0.000000000010030 
0.3 1.349858807576003 1.349858807574302 0.000000000001701 
0.4 1.491824697641270 1.491824697547110 0.000000000904160 
0.5 1.648721270700128 1.648721270502115 0.000000000198013 
0.6 1.822118800390509 1.822118800361503 0.000000000029006 
0.7 2.013752707470477 2.013752706680191 0.000000000790286 
0.8 2.225540928492468 2.225540925492324 0.000000003000144 
0.9 2.459603111156950 2.459603111052913 0.000000000104037 

 
 
 
 
 
 
 

Input 
Xi 

Exact Solution ya 
Output of FFNN yt(x) 
when we use CG withβPR 

Deviation 
∆y(x) =|yt(x) −ya(x)|, 

1.0 0 0 0 
0.0 0 0 0 
0.1 0.099 0.098891 0.000109 
0.2 0.192 0.192098 0.000098 
0.3 0.273 0.272895 0.000105 
0.4 0.336 0.33602 0.00002 
0.5 0.375 0.37515 0.00015 
0.6 0.384 0.38406 0.00006 
0.7 0.357 0.3571 0.0001 
0.8 0.288 0.288021 0.000021 
0.9 0.171 0.17103 0.00003 
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Fig( 1): A fully connected feed-forward neural network with one hidden layer 

 
 

 
 

Fig.(2) : the mean square error of FFNN for example (1) 

 
Fig.(3) the performance of FFNN for example (1) 
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Fig.(4) : the mean square error of FFNN for example (2) 
 
 
 

 
 

Fig.(5) : the performance of FFNN for example (2) 
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-تغـذية تقـدمية لحل معـادلات فولتيرا التفاضليـة يتـصميم شـبكة عصبيـة ذ
 التكاملية الخطية

 

و غادة حسن إبراهيم لمى ناجي محـمد توفيـق  
 الهيثم ، جامعة بغدادقسم الرياضيات، كلية التربية ابن 

 2011 ايار 30قبل البحث في:     2011 نيسان18استلم البحث في: 

 
 الخلاصة

حل التقريبي لمعادلة فولتيرا متعددة الطبقات لايجاد التغذية تقدمية  يالهدف من البحث هو تصميم شبكة عصبية ذ
   هذه الطريقة ساعد على تقليل الحسابات  عمالالشروط الحدودية. است يالتفاضلية التكاملية الخطية من الرتبة الثانية  ذ

 .أيضاالخوارزميات من خلال الأمثلة عمالوضحنا كيفية است .أثناء الحل بشكل جذاب في 
 

تغذيــــة تقدميــــة،  وشـــبكة عصــــبية ذالتكامليــــة  ، -: مســــائل القــــيم الحدوديــــة، معادلـــة فــــولتيرا التفاضــــليةالكلمــــات المفتاحيــــة
 خوارزمية تدريب للتوليد الخلفي.
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